StableVITON / app.py
rlawjdghek's picture
add zero gpu
2ec4f01
raw
history blame
7.93 kB
import spaces
import os
import sys
import time
from glob import glob
from os.path import join as opj
from pathlib import Path
import apply_net
import gradio as gr
import torch
from omegaconf import OmegaConf
from PIL import Image
print("pip import done")
from cldm.model import create_model
from cldm.plms_hacked import PLMSSampler
from detectron2.data.detection_utils import _apply_exif_orientation, convert_PIL_to_numpy
from utils_stableviton import get_batch, get_mask_location, tensor2img
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
# from detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio
from preprocess.humanparsing.run_parsing import Parsing
from preprocess.openpose.run_openpose import OpenPose
print("app import done")
os.environ['GRADIO_TEMP_DIR'] = './tmp' # TODO: turn off when final upload
IMG_H = 512
IMG_W = 384
openpose_model_hd = OpenPose(0)
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
parsing_model_hd = Parsing(0)
# densepose_model_hd = DensePose4Gradio(
# cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml',
# model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl',
# )
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# #### model init >>>>
config = OmegaConf.load("./configs/VITON.yaml")
config.model.params.img_H = IMG_H
config.model.params.img_W = IMG_W
params = config.model.params
model = create_model(config_path=None, config=config)
model.load_state_dict(torch.load("./checkpoints/VITONHD.ckpt", map_location="cpu")["state_dict"])
model = model.cuda()
model.eval()
sampler = PLMSSampler(model)
# #### model init <<<<
def stable_viton_model_hd(
batch,
n_steps,
):
z, cond = model.get_input(batch, params.first_stage_key)
bs = z.shape[0]
c_crossattn = cond["c_crossattn"][0][:bs]
if c_crossattn.ndim == 4:
c_crossattn = model.get_learned_conditioning(c_crossattn)
cond["c_crossattn"] = [c_crossattn]
uc_cross = model.get_unconditional_conditioning(bs)
uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]}
uc_full["first_stage_cond"] = cond["first_stage_cond"]
for k, v in batch.items():
if isinstance(v, torch.Tensor):
batch[k] = v.cuda()
sampler.model.batch = batch
ts = torch.full((1,), 999, device=z.device, dtype=torch.long)
start_code = model.q_sample(z, ts)
output, _, _ = sampler.sample(
n_steps,
bs,
(4, IMG_H // 8, IMG_W // 8),
cond,
x_T=start_code,
verbose=False,
eta=0.0,
unconditional_conditioning=uc_full,
)
output = model.decode_first_stage(output)
output = tensor2img(output)
pil_output = Image.fromarray(output)
return pil_output
@spaces.GPU # TODO: turn on when final upload
@torch.no_grad()
def process_hd(vton_img, garm_img, n_steps):
model_type = 'hd'
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
stt = time.time()
print('load images... ', end='')
garm_img = Image.open(garm_img).resize((IMG_W, IMG_H))
vton_img = Image.open(vton_img).resize((IMG_W, IMG_H))
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get agnostic map... ', end='')
keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H)))
model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((IMG_W, IMG_H), Image.NEAREST)
mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST)
masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map
print('%.2fs' % (time.time() - stt))
stt = time.time()
print('get densepose... ', end='')
vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose
# densepose = densepose_model_hd.execute(vton_img) # densepose
human_img_arg = _apply_exif_orientation(vton_img.resize((IMG_W, IMG_H)))
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
# verbosity = getattr(args, "verbosity", None)
pose_img = args.func(args, human_img_arg)
pose_img = pose_img[:, :, ::-1]
pose_img = Image.fromarray(pose_img).resize((IMG_W, IMG_H))
print('%.2fs' % (time.time() - stt))
batch = get_batch(
vton_img,
garm_img,
densepose,
masked_vton_img,
mask,
IMG_H,
IMG_W
)
sample = stable_viton_model_hd(
batch,
n_steps
)
return sample
example_path = opj(os.path.dirname(__file__), 'examples')
example_model_ps = sorted(glob(opj(example_path, "model/*")))
example_garment_ps = sorted(glob(opj(example_path, "garment/*")))
with gr.Blocks(css='style.css') as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>StableVITON Demo πŸ‘•πŸ‘”πŸ‘—</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://arxiv.org/abs/2312.01725'>
<img src="https://img.shields.io/badge/arXiv-2312.01725-red">
</a>
&nbsp;
<a href='https://rlawjdghek.github.io/StableVITON/'>
<img src='https://img.shields.io/badge/page-github.io-blue.svg'>
</a>
&nbsp;
<a href='https://github.com/rlawjdghek/StableVITON'>
<img src='https://img.shields.io/github/stars/rlawjdghek/StableVITON'>
</a>
&nbsp;
<a href='https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode'>
<img src='https://img.shields.io/badge/license-CC_BY--NC--SA_4.0-lightgrey'>
</a>
</div>
</div>
</div>
"""
)
with gr.Row():
gr.Markdown("## Experience virtual try-on with your own images!")
with gr.Row():
with gr.Column():
vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0])
example = gr.Examples(
inputs=vton_img,
examples_per_page=14,
examples=example_model_ps)
with gr.Column():
garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0])
example = gr.Examples(
inputs=garm_img,
examples_per_page=14,
examples=example_garment_ps)
with gr.Column():
result_gallery = gr.Image(label='Output', show_label=False, scale=1)
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", scale=1)
with gr.Column():
run_button = gr.Button(value="Run")
# TODO: change default values (important!)
# n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
n_steps = gr.Slider(label="Steps", minimum=20, maximum=70, value=25, step=1)
# guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
# seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
ips = [vton_img, garm_img, n_steps]
run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])
demo.queue().launch()