Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import os | |
import tempfile | |
import unittest | |
import torch | |
from omegaconf import OmegaConf | |
from detectron2 import model_zoo | |
from detectron2.config import configurable, downgrade_config, get_cfg, upgrade_config | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling import build_model | |
_V0_CFG = """ | |
MODEL: | |
RPN_HEAD: | |
NAME: "TEST" | |
VERSION: 0 | |
""" | |
_V1_CFG = """ | |
MODEL: | |
WEIGHT: "/path/to/weight" | |
""" | |
class TestConfigVersioning(unittest.TestCase): | |
def test_upgrade_downgrade_consistency(self): | |
cfg = get_cfg() | |
# check that custom is preserved | |
cfg.USER_CUSTOM = 1 | |
down = downgrade_config(cfg, to_version=0) | |
up = upgrade_config(down) | |
self.assertTrue(up == cfg) | |
def _merge_cfg_str(self, cfg, merge_str): | |
f = tempfile.NamedTemporaryFile(mode="w", suffix=".yaml", delete=False) | |
try: | |
f.write(merge_str) | |
f.close() | |
cfg.merge_from_file(f.name) | |
finally: | |
os.remove(f.name) | |
return cfg | |
def test_auto_upgrade(self): | |
cfg = get_cfg() | |
latest_ver = cfg.VERSION | |
cfg.USER_CUSTOM = 1 | |
self._merge_cfg_str(cfg, _V0_CFG) | |
self.assertEqual(cfg.MODEL.RPN.HEAD_NAME, "TEST") | |
self.assertEqual(cfg.VERSION, latest_ver) | |
def test_guess_v1(self): | |
cfg = get_cfg() | |
latest_ver = cfg.VERSION | |
self._merge_cfg_str(cfg, _V1_CFG) | |
self.assertEqual(cfg.VERSION, latest_ver) | |
class _TestClassA(torch.nn.Module): | |
def __init__(self, arg1, arg2, arg3=3): | |
super().__init__() | |
self.arg1 = arg1 | |
self.arg2 = arg2 | |
self.arg3 = arg3 | |
assert arg1 == 1 | |
assert arg2 == 2 | |
assert arg3 == 3 | |
def from_config(cls, cfg): | |
args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} | |
return args | |
class _TestClassB(_TestClassA): | |
def __init__(self, input_shape, arg1, arg2, arg3=3): | |
""" | |
Doc of _TestClassB | |
""" | |
assert input_shape == "shape" | |
super().__init__(arg1, arg2, arg3) | |
def from_config(cls, cfg, input_shape): # test extra positional arg in from_config | |
args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} | |
args["input_shape"] = input_shape | |
return args | |
class _LegacySubClass(_TestClassB): | |
# an old subclass written in cfg style | |
def __init__(self, cfg, input_shape, arg4=4): | |
super().__init__(cfg, input_shape) | |
assert self.arg1 == 1 | |
assert self.arg2 == 2 | |
assert self.arg3 == 3 | |
class _NewSubClassNewInit(_TestClassB): | |
# test new subclass with a new __init__ | |
def __init__(self, input_shape, arg4=4, **kwargs): | |
super().__init__(input_shape, **kwargs) | |
assert self.arg1 == 1 | |
assert self.arg2 == 2 | |
assert self.arg3 == 3 | |
class _LegacySubClassNotCfg(_TestClassB): | |
# an old subclass written in cfg style, but argument is not called "cfg" | |
def __init__(self, config, input_shape): | |
super().__init__(config, input_shape) | |
assert self.arg1 == 1 | |
assert self.arg2 == 2 | |
assert self.arg3 == 3 | |
class _TestClassC(_TestClassB): | |
def from_config(cls, cfg, input_shape, **kwargs): # test extra kwarg overwrite | |
args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} | |
args["input_shape"] = input_shape | |
args.update(kwargs) | |
return args | |
class _TestClassD(_TestClassA): | |
def __init__(self, input_shape: ShapeSpec, arg1: int, arg2, arg3=3): | |
assert input_shape == "shape" | |
super().__init__(arg1, arg2, arg3) | |
# _TestClassA.from_config does not have input_shape args. | |
# Test whether input_shape will be forwarded to __init__ | |
def _test_func(arg1, arg2=2, arg3=3, arg4=4): | |
return arg1, arg2, arg3, arg4 | |
class TestConfigurable(unittest.TestCase): | |
def testInitWithArgs(self): | |
_ = _TestClassA(arg1=1, arg2=2, arg3=3) | |
_ = _TestClassB("shape", arg1=1, arg2=2) | |
_ = _TestClassC("shape", arg1=1, arg2=2) | |
_ = _TestClassD("shape", arg1=1, arg2=2, arg3=3) | |
def testPatchedAttr(self): | |
self.assertTrue("Doc" in _TestClassB.__init__.__doc__) | |
self.assertEqual(_TestClassD.__init__.__annotations__["arg1"], int) | |
def testInitWithCfg(self): | |
cfg = get_cfg() | |
cfg.ARG1 = 1 | |
cfg.ARG2 = 2 | |
cfg.ARG3 = 3 | |
_ = _TestClassA(cfg) | |
_ = _TestClassB(cfg, input_shape="shape") | |
_ = _TestClassC(cfg, input_shape="shape") | |
_ = _TestClassD(cfg, input_shape="shape") | |
_ = _LegacySubClass(cfg, input_shape="shape") | |
_ = _NewSubClassNewInit(cfg, input_shape="shape") | |
_ = _LegacySubClassNotCfg(cfg, input_shape="shape") | |
with self.assertRaises(TypeError): | |
# disallow forwarding positional args to __init__ since it's prone to errors | |
_ = _TestClassD(cfg, "shape") | |
# call with kwargs instead | |
_ = _TestClassA(cfg=cfg) | |
_ = _TestClassB(cfg=cfg, input_shape="shape") | |
_ = _TestClassC(cfg=cfg, input_shape="shape") | |
_ = _TestClassD(cfg=cfg, input_shape="shape") | |
_ = _LegacySubClass(cfg=cfg, input_shape="shape") | |
_ = _NewSubClassNewInit(cfg=cfg, input_shape="shape") | |
_ = _LegacySubClassNotCfg(config=cfg, input_shape="shape") | |
def testInitWithCfgOverwrite(self): | |
cfg = get_cfg() | |
cfg.ARG1 = 1 | |
cfg.ARG2 = 999 # wrong config | |
with self.assertRaises(AssertionError): | |
_ = _TestClassA(cfg, arg3=3) | |
# overwrite arg2 with correct config later: | |
_ = _TestClassA(cfg, arg2=2, arg3=3) | |
_ = _TestClassB(cfg, input_shape="shape", arg2=2, arg3=3) | |
_ = _TestClassC(cfg, input_shape="shape", arg2=2, arg3=3) | |
_ = _TestClassD(cfg, input_shape="shape", arg2=2, arg3=3) | |
# call with kwargs cfg=cfg instead | |
_ = _TestClassA(cfg=cfg, arg2=2, arg3=3) | |
_ = _TestClassB(cfg=cfg, input_shape="shape", arg2=2, arg3=3) | |
_ = _TestClassC(cfg=cfg, input_shape="shape", arg2=2, arg3=3) | |
_ = _TestClassD(cfg=cfg, input_shape="shape", arg2=2, arg3=3) | |
def testInitWithCfgWrongArgs(self): | |
cfg = get_cfg() | |
cfg.ARG1 = 1 | |
cfg.ARG2 = 2 | |
with self.assertRaises(TypeError): | |
_ = _TestClassB(cfg, "shape", not_exist=1) | |
with self.assertRaises(TypeError): | |
_ = _TestClassC(cfg, "shape", not_exist=1) | |
with self.assertRaises(TypeError): | |
_ = _TestClassD(cfg, "shape", not_exist=1) | |
def testBadClass(self): | |
class _BadClass1: | |
def __init__(self, a=1, b=2): | |
pass | |
class _BadClass2: | |
def __init__(self, a=1, b=2): | |
pass | |
def from_config(self, cfg): # noqa | |
pass | |
class _BadClass3: | |
def __init__(self, a=1, b=2): | |
pass | |
# bad name: must be cfg | |
def from_config(cls, config): # noqa | |
pass | |
with self.assertRaises(AttributeError): | |
_ = _BadClass1(a=1) | |
with self.assertRaises(TypeError): | |
_ = _BadClass2(a=1) | |
with self.assertRaises(TypeError): | |
_ = _BadClass3(get_cfg()) | |
def testFuncWithCfg(self): | |
cfg = get_cfg() | |
cfg.ARG1 = 10 | |
cfg.ARG3 = 30 | |
self.assertEqual(_test_func(1), (1, 2, 3, 4)) | |
with self.assertRaises(TypeError): | |
_test_func(cfg) | |
self.assertEqual(_test_func(cfg, arg2=2), (10, 2, 30, 4)) | |
self.assertEqual(_test_func(cfg, arg1=100, arg2=20), (100, 20, 30, 4)) | |
self.assertEqual(_test_func(cfg, arg1=100, arg2=20, arg4=40), (100, 20, 30, 40)) | |
self.assertTrue(callable(_test_func.from_config)) | |
def testOmegaConf(self): | |
cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml") | |
cfg = OmegaConf.create(cfg.dump()) | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE = "cpu" | |
# test that a model can be built with omegaconf config as well | |
build_model(cfg) | |