Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
import numpy as np | |
import unittest | |
from unittest import mock | |
import torch | |
from PIL import Image, ImageOps | |
from torch.nn import functional as F | |
from detectron2.config import get_cfg | |
from detectron2.data import detection_utils | |
from detectron2.data import transforms as T | |
from detectron2.utils.logger import setup_logger | |
logger = logging.getLogger(__name__) | |
def polygon_allclose(poly1, poly2): | |
""" | |
Test whether two polygons are the same. | |
Both arguments are nx2 numpy arrays. | |
""" | |
# ABCD and CDAB are the same polygon. So it's important to check after rolling | |
for k in range(len(poly1)): | |
rolled_poly1 = np.roll(poly1, k, axis=0) | |
if np.allclose(rolled_poly1, poly2): | |
return True | |
return False | |
class TestTransforms(unittest.TestCase): | |
def setUp(self): | |
setup_logger() | |
def test_apply_rotated_boxes(self): | |
np.random.seed(125) | |
cfg = get_cfg() | |
is_train = True | |
augs = detection_utils.build_augmentation(cfg, is_train) | |
image = np.random.rand(200, 300) | |
image, transforms = T.apply_augmentations(augs, image) | |
image_shape = image.shape[:2] # h, w | |
assert image_shape == (800, 1200) | |
annotation = {"bbox": [179, 97, 62, 40, -56]} | |
boxes = np.array([annotation["bbox"]], dtype=np.float64) # boxes.shape = (1, 5) | |
transformed_bbox = transforms.apply_rotated_box(boxes)[0] | |
expected_bbox = np.array([484, 388, 248, 160, 56], dtype=np.float64) | |
err_msg = "transformed_bbox = {}, expected {}".format(transformed_bbox, expected_bbox) | |
assert np.allclose(transformed_bbox, expected_bbox), err_msg | |
def test_resize_and_crop(self): | |
np.random.seed(125) | |
min_scale = 0.2 | |
max_scale = 2.0 | |
target_height = 1100 | |
target_width = 1000 | |
resize_aug = T.ResizeScale(min_scale, max_scale, target_height, target_width) | |
fixed_size_crop_aug = T.FixedSizeCrop((target_height, target_width)) | |
hflip_aug = T.RandomFlip() | |
augs = [resize_aug, fixed_size_crop_aug, hflip_aug] | |
original_image = np.random.rand(900, 800) | |
image, transforms = T.apply_augmentations(augs, original_image) | |
image_shape = image.shape[:2] # h, w | |
self.assertEqual((1100, 1000), image_shape) | |
boxes = np.array( | |
[[91, 46, 144, 111], [523, 251, 614, 295]], | |
dtype=np.float64, | |
) | |
transformed_bboxs = transforms.apply_box(boxes) | |
expected_bboxs = np.array( | |
[ | |
[895.42, 33.42666667, 933.91125, 80.66], | |
[554.0825, 182.39333333, 620.17125, 214.36666667], | |
], | |
dtype=np.float64, | |
) | |
err_msg = "transformed_bbox = {}, expected {}".format(transformed_bboxs, expected_bboxs) | |
self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg) | |
polygon = np.array([[91, 46], [144, 46], [144, 111], [91, 111]]) | |
transformed_polygons = transforms.apply_polygons([polygon]) | |
expected_polygon = np.array([[934.0, 33.0], [934.0, 80.0], [896.0, 80.0], [896.0, 33.0]]) | |
self.assertEqual(1, len(transformed_polygons)) | |
err_msg = "transformed_polygon = {}, expected {}".format( | |
transformed_polygons[0], expected_polygon | |
) | |
self.assertTrue(polygon_allclose(transformed_polygons[0], expected_polygon), err_msg) | |
def test_apply_rotated_boxes_unequal_scaling_factor(self): | |
np.random.seed(125) | |
h, w = 400, 200 | |
newh, neww = 800, 800 | |
image = np.random.rand(h, w) | |
augs = [] | |
augs.append(T.Resize(shape=(newh, neww))) | |
image, transforms = T.apply_augmentations(augs, image) | |
image_shape = image.shape[:2] # h, w | |
assert image_shape == (newh, neww) | |
boxes = np.array( | |
[ | |
[150, 100, 40, 20, 0], | |
[150, 100, 40, 20, 30], | |
[150, 100, 40, 20, 90], | |
[150, 100, 40, 20, -90], | |
], | |
dtype=np.float64, | |
) | |
transformed_boxes = transforms.apply_rotated_box(boxes) | |
expected_bboxes = np.array( | |
[ | |
[600, 200, 160, 40, 0], | |
[600, 200, 144.22205102, 52.91502622, 49.10660535], | |
[600, 200, 80, 80, 90], | |
[600, 200, 80, 80, -90], | |
], | |
dtype=np.float64, | |
) | |
err_msg = "transformed_boxes = {}, expected {}".format(transformed_boxes, expected_bboxes) | |
assert np.allclose(transformed_boxes, expected_bboxes), err_msg | |
def test_print_augmentation(self): | |
t = T.RandomCrop("relative", (100, 100)) | |
self.assertEqual(str(t), "RandomCrop(crop_type='relative', crop_size=(100, 100))") | |
t0 = T.RandomFlip(prob=0.5) | |
self.assertEqual(str(t0), "RandomFlip(prob=0.5)") | |
t1 = T.RandomFlip() | |
self.assertEqual(str(t1), "RandomFlip()") | |
t = T.AugmentationList([t0, t1]) | |
self.assertEqual(str(t), f"AugmentationList[{t0}, {t1}]") | |
def test_random_apply_prob_out_of_range_check(self): | |
test_probabilities = {0.0: True, 0.5: True, 1.0: True, -0.01: False, 1.01: False} | |
for given_probability, is_valid in test_probabilities.items(): | |
if not is_valid: | |
self.assertRaises(AssertionError, T.RandomApply, None, prob=given_probability) | |
else: | |
T.RandomApply(T.NoOpTransform(), prob=given_probability) | |
def test_random_apply_wrapping_aug_probability_occured_evaluation(self): | |
transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation) | |
image_mock = mock.MagicMock(name="MockImage") | |
random_apply = T.RandomApply(transform_mock, prob=0.001) | |
with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): | |
transform = random_apply.get_transform(image_mock) | |
transform_mock.get_transform.assert_called_once_with(image_mock) | |
self.assertIsNot(transform, transform_mock) | |
def test_random_apply_wrapping_std_transform_probability_occured_evaluation(self): | |
transform_mock = mock.MagicMock(name="MockTransform", spec=T.Transform) | |
image_mock = mock.MagicMock(name="MockImage") | |
random_apply = T.RandomApply(transform_mock, prob=0.001) | |
with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): | |
transform = random_apply.get_transform(image_mock) | |
self.assertIs(transform, transform_mock) | |
def test_random_apply_probability_not_occured_evaluation(self): | |
transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation) | |
image_mock = mock.MagicMock(name="MockImage") | |
random_apply = T.RandomApply(transform_mock, prob=0.001) | |
with mock.patch.object(random_apply, "_rand_range", return_value=0.9): | |
transform = random_apply.get_transform(image_mock) | |
transform_mock.get_transform.assert_not_called() | |
self.assertIsInstance(transform, T.NoOpTransform) | |
def test_augmentation_input_args(self): | |
input_shape = (100, 100) | |
output_shape = (50, 50) | |
# define two augmentations with different args | |
class TG1(T.Augmentation): | |
def get_transform(self, image, sem_seg): | |
return T.ResizeTransform( | |
input_shape[0], input_shape[1], output_shape[0], output_shape[1] | |
) | |
class TG2(T.Augmentation): | |
def get_transform(self, image): | |
assert image.shape[:2] == output_shape # check that TG1 is applied | |
return T.HFlipTransform(output_shape[1]) | |
image = np.random.rand(*input_shape).astype("float32") | |
sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8") | |
inputs = T.AugInput(image, sem_seg=sem_seg) # provide two args | |
tfms = inputs.apply_augmentations([TG1(), TG2()]) | |
self.assertIsInstance(tfms[0], T.ResizeTransform) | |
self.assertIsInstance(tfms[1], T.HFlipTransform) | |
self.assertTrue(inputs.image.shape[:2] == output_shape) | |
self.assertTrue(inputs.sem_seg.shape[:2] == output_shape) | |
class TG3(T.Augmentation): | |
def get_transform(self, image, nonexist): | |
pass | |
with self.assertRaises(AttributeError): | |
inputs.apply_augmentations([TG3()]) | |
def test_augmentation_list(self): | |
input_shape = (100, 100) | |
image = np.random.rand(*input_shape).astype("float32") | |
sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8") | |
inputs = T.AugInput(image, sem_seg=sem_seg) # provide two args | |
augs = T.AugmentationList([T.RandomFlip(), T.Resize(20)]) | |
_ = T.AugmentationList([augs, T.Resize(30)])(inputs) | |
# 3 in latest fvcore (flattened transformlist), 2 in older | |
# self.assertEqual(len(tfms), 3) | |
def test_color_transforms(self): | |
rand_img = np.random.random((100, 100, 3)) * 255 | |
rand_img = rand_img.astype("uint8") | |
# Test no-op | |
noop_transform = T.ColorTransform(lambda img: img) | |
self.assertTrue(np.array_equal(rand_img, noop_transform.apply_image(rand_img))) | |
# Test a ImageOps operation | |
magnitude = np.random.randint(0, 256) | |
solarize_transform = T.PILColorTransform(lambda img: ImageOps.solarize(img, magnitude)) | |
expected_img = ImageOps.solarize(Image.fromarray(rand_img), magnitude) | |
self.assertTrue(np.array_equal(expected_img, solarize_transform.apply_image(rand_img))) | |
def test_resize_transform(self): | |
input_shapes = [(100, 100), (100, 100, 1), (100, 100, 3)] | |
output_shapes = [(200, 200), (200, 200, 1), (200, 200, 3)] | |
for in_shape, out_shape in zip(input_shapes, output_shapes): | |
in_img = np.random.randint(0, 255, size=in_shape, dtype=np.uint8) | |
tfm = T.ResizeTransform(in_shape[0], in_shape[1], out_shape[0], out_shape[1]) | |
out_img = tfm.apply_image(in_img) | |
self.assertEqual(out_img.shape, out_shape) | |
def test_resize_shorted_edge_scriptable(self): | |
def f(image): | |
newh, neww = T.ResizeShortestEdge.get_output_shape( | |
image.shape[-2], image.shape[-1], 80, 133 | |
) | |
return F.interpolate(image.unsqueeze(0), size=(newh, neww)) | |
input = torch.randn(3, 10, 10) | |
script_f = torch.jit.script(f) | |
self.assertTrue(torch.allclose(f(input), script_f(input))) | |
# generalize to new shapes | |
input = torch.randn(3, 8, 100) | |
self.assertTrue(torch.allclose(f(input), script_f(input))) | |
def test_extent_transform(self): | |
input_shapes = [(100, 100), (100, 100, 1), (100, 100, 3)] | |
src_rect = (20, 20, 80, 80) | |
output_shapes = [(200, 200), (200, 200, 1), (200, 200, 3)] | |
for in_shape, out_shape in zip(input_shapes, output_shapes): | |
in_img = np.random.randint(0, 255, size=in_shape, dtype=np.uint8) | |
tfm = T.ExtentTransform(src_rect, out_shape[:2]) | |
out_img = tfm.apply_image(in_img) | |
self.assertTrue(out_img.shape == out_shape) | |