rlawjdghek's picture
detectron2
a9a0ec2
raw
history blame
7.43 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import unittest
from detectron2.layers import ShapeSpec
from detectron2.modeling.mmdet_wrapper import MMDetBackbone, MMDetDetector
try:
import mmdet.models # noqa
HAS_MMDET = True
except ImportError:
HAS_MMDET = False
@unittest.skipIf(not HAS_MMDET, "mmdet not available")
class TestMMDetWrapper(unittest.TestCase):
def test_backbone(self):
MMDetBackbone(
backbone=dict(
type="DetectoRS_ResNet",
conv_cfg=dict(type="ConvAWS"),
sac=dict(type="SAC", use_deform=True),
stage_with_sac=(False, True, True, True),
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type="BN", requires_grad=True),
norm_eval=True,
style="pytorch",
),
neck=dict(
type="FPN",
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5,
),
# skip pretrained model for tests
# pretrained_backbone="torchvision://resnet50",
output_shapes=[ShapeSpec(channels=256, stride=s) for s in [4, 8, 16, 32, 64]],
output_names=["p2", "p3", "p4", "p5", "p6"],
)
def test_detector(self):
# a basic R50 Mask R-CNN
MMDetDetector(
detector=dict(
type="MaskRCNN",
backbone=dict(
type="ResNet",
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type="BN", requires_grad=True),
norm_eval=True,
style="pytorch",
# skip pretrained model for tests
# init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'))
),
neck=dict(
type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5
),
rpn_head=dict(
type="RPNHead",
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type="AnchorGenerator",
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64],
),
bbox_coder=dict(
type="DeltaXYWHBBoxCoder",
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0],
),
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
),
roi_head=dict(
type="StandardRoIHead",
bbox_roi_extractor=dict(
type="SingleRoIExtractor",
roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32],
),
bbox_head=dict(
type="Shared2FCBBoxHead",
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type="DeltaXYWHBBoxCoder",
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2],
),
reg_class_agnostic=False,
loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type="L1Loss", loss_weight=1.0),
),
mask_roi_extractor=dict(
type="SingleRoIExtractor",
roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32],
),
mask_head=dict(
type="FCNMaskHead",
num_convs=4,
in_channels=256,
conv_out_channels=256,
num_classes=80,
loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0),
),
),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type="MaxIoUAssigner",
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1,
),
sampler=dict(
type="RandomSampler",
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
),
allowed_border=-1,
pos_weight=-1,
debug=False,
),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type="nms", iou_threshold=0.7),
min_bbox_size=0,
),
rcnn=dict(
assigner=dict(
type="MaxIoUAssigner",
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=True,
ignore_iof_thr=-1,
),
sampler=dict(
type="RandomSampler",
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
),
mask_size=28,
pos_weight=-1,
debug=False,
),
),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type="nms", iou_threshold=0.7),
min_bbox_size=0,
),
rcnn=dict(
score_thr=0.05,
nms=dict(type="nms", iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5,
),
),
),
pixel_mean=[1, 2, 3],
pixel_std=[1, 2, 3],
)