Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import logging | |
import math | |
import random | |
import unittest | |
import torch | |
from fvcore.common.benchmark import benchmark | |
from detectron2.layers.rotated_boxes import pairwise_iou_rotated | |
from detectron2.structures.boxes import Boxes | |
from detectron2.structures.rotated_boxes import RotatedBoxes, pairwise_iou | |
from detectron2.utils.testing import reload_script_model | |
logger = logging.getLogger(__name__) | |
class TestRotatedBoxesLayer(unittest.TestCase): | |
def test_iou_0_dim_cpu(self): | |
boxes1 = torch.rand(0, 5, dtype=torch.float32) | |
boxes2 = torch.rand(10, 5, dtype=torch.float32) | |
expected_ious = torch.zeros(0, 10, dtype=torch.float32) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
boxes1 = torch.rand(10, 5, dtype=torch.float32) | |
boxes2 = torch.rand(0, 5, dtype=torch.float32) | |
expected_ious = torch.zeros(10, 0, dtype=torch.float32) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_iou_0_dim_cuda(self): | |
boxes1 = torch.rand(0, 5, dtype=torch.float32) | |
boxes2 = torch.rand(10, 5, dtype=torch.float32) | |
expected_ious = torch.zeros(0, 10, dtype=torch.float32) | |
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) | |
self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious)) | |
boxes1 = torch.rand(10, 5, dtype=torch.float32) | |
boxes2 = torch.rand(0, 5, dtype=torch.float32) | |
expected_ious = torch.zeros(10, 0, dtype=torch.float32) | |
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) | |
self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious)) | |
def test_iou_half_overlap_cpu(self): | |
boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32) | |
boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32) | |
expected_ious = torch.tensor([[0.5]], dtype=torch.float32) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_iou_half_overlap_cuda(self): | |
boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32) | |
boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32) | |
expected_ious = torch.tensor([[0.5]], dtype=torch.float32) | |
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) | |
self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious)) | |
def test_iou_precision(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor([[565, 565, 10, 10.0, 0]], dtype=torch.float32, device=device) | |
boxes2 = torch.tensor([[565, 565, 10, 8.3, 0]], dtype=torch.float32, device=device) | |
iou = 8.3 / 10.0 | |
expected_ious = torch.tensor([[iou]], dtype=torch.float32) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
self.assertTrue(torch.allclose(ious.cpu(), expected_ious)) | |
def test_iou_too_many_boxes_cuda(self): | |
s1, s2 = 5, 1289035 | |
boxes1 = torch.zeros(s1, 5) | |
boxes2 = torch.zeros(s2, 5) | |
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) | |
self.assertTupleEqual(tuple(ious_cuda.shape), (s1, s2)) | |
def test_iou_extreme(self): | |
# Cause floating point issues in cuda kernels (#1266) | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device) | |
boxes2 = torch.tensor( | |
[ | |
[ | |
-1.117407639806935e17, | |
1.3858420478349148e18, | |
1000.0000610351562, | |
1000.0000610351562, | |
1612.0, | |
] | |
], | |
device=device, | |
) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
self.assertTrue(ious.min() >= 0, ious) | |
def test_iou_issue_2154(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor( | |
[ | |
[ | |
296.6620178222656, | |
458.73883056640625, | |
23.515729904174805, | |
47.677001953125, | |
0.08795166015625, | |
] | |
], | |
device=device, | |
) | |
boxes2 = torch.tensor( | |
[[296.66201, 458.73882000000003, 23.51573, 47.67702, 0.087951]], | |
device=device, | |
) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
expected_ious = torch.tensor([[1.0]], dtype=torch.float32) | |
self.assertTrue(torch.allclose(ious.cpu(), expected_ious)) | |
def test_iou_issue_2167(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor( | |
[ | |
[ | |
2563.74462890625000000000, | |
1436.79016113281250000000, | |
2174.70336914062500000000, | |
214.09500122070312500000, | |
115.11834716796875000000, | |
] | |
], | |
device=device, | |
) | |
boxes2 = torch.tensor( | |
[ | |
[ | |
2563.74462890625000000000, | |
1436.79028320312500000000, | |
2174.70288085937500000000, | |
214.09495544433593750000, | |
115.11835479736328125000, | |
] | |
], | |
device=device, | |
) | |
ious = pairwise_iou_rotated(boxes1, boxes2) | |
expected_ious = torch.tensor([[1.0]], dtype=torch.float32) | |
self.assertTrue(torch.allclose(ious.cpu(), expected_ious)) | |
class TestRotatedBoxesStructure(unittest.TestCase): | |
def test_clip_area_0_degree(self): | |
for _ in range(50): | |
num_boxes = 100 | |
boxes_5d = torch.zeros(num_boxes, 5) | |
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500) | |
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500) | |
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500) | |
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500) | |
# Convert from (x_ctr, y_ctr, w, h, 0) to (x1, y1, x2, y2) | |
boxes_4d = torch.zeros(num_boxes, 4) | |
boxes_4d[:, 0] = boxes_5d[:, 0] - boxes_5d[:, 2] / 2.0 | |
boxes_4d[:, 1] = boxes_5d[:, 1] - boxes_5d[:, 3] / 2.0 | |
boxes_4d[:, 2] = boxes_5d[:, 0] + boxes_5d[:, 2] / 2.0 | |
boxes_4d[:, 3] = boxes_5d[:, 1] + boxes_5d[:, 3] / 2.0 | |
image_size = (500, 600) | |
test_boxes_4d = Boxes(boxes_4d) | |
test_boxes_5d = RotatedBoxes(boxes_5d) | |
# Before clip | |
areas_4d = test_boxes_4d.area() | |
areas_5d = test_boxes_5d.area() | |
self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5)) | |
# After clip | |
test_boxes_4d.clip(image_size) | |
test_boxes_5d.clip(image_size) | |
areas_4d = test_boxes_4d.area() | |
areas_5d = test_boxes_5d.area() | |
self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5)) | |
def test_clip_area_arbitrary_angle(self): | |
num_boxes = 100 | |
boxes_5d = torch.zeros(num_boxes, 5) | |
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500) | |
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500) | |
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500) | |
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500) | |
boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) | |
clip_angle_threshold = random.uniform(0, 180) | |
image_size = (500, 600) | |
test_boxes_5d = RotatedBoxes(boxes_5d) | |
# Before clip | |
areas_before = test_boxes_5d.area() | |
# After clip | |
test_boxes_5d.clip(image_size, clip_angle_threshold) | |
areas_diff = test_boxes_5d.area() - areas_before | |
# the areas should only decrease after clipping | |
self.assertTrue(torch.all(areas_diff <= 0)) | |
# whenever the box is clipped (thus the area shrinks), | |
# the angle for the box must be within the clip_angle_threshold | |
# Note that the clip function will normalize the angle range | |
# to be within (-180, 180] | |
self.assertTrue( | |
torch.all( | |
torch.abs(test_boxes_5d.tensor[:, 4][torch.where(areas_diff < 0)]) | |
< clip_angle_threshold | |
) | |
) | |
def test_normalize_angles(self): | |
# torch.manual_seed(0) | |
for _ in range(50): | |
num_boxes = 100 | |
boxes_5d = torch.zeros(num_boxes, 5) | |
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500) | |
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500) | |
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500) | |
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500) | |
boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) | |
rotated_boxes = RotatedBoxes(boxes_5d) | |
normalized_boxes = rotated_boxes.clone() | |
normalized_boxes.normalize_angles() | |
self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] >= -180)) | |
self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] < 180)) | |
# x, y, w, h should not change | |
self.assertTrue(torch.allclose(boxes_5d[:, :4], normalized_boxes.tensor[:, :4])) | |
# the cos/sin values of the angles should stay the same | |
self.assertTrue( | |
torch.allclose( | |
torch.cos(boxes_5d[:, 4] * math.pi / 180), | |
torch.cos(normalized_boxes.tensor[:, 4] * math.pi / 180), | |
atol=1e-5, | |
) | |
) | |
self.assertTrue( | |
torch.allclose( | |
torch.sin(boxes_5d[:, 4] * math.pi / 180), | |
torch.sin(normalized_boxes.tensor[:, 4] * math.pi / 180), | |
atol=1e-5, | |
) | |
) | |
def test_pairwise_iou_0_degree(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor( | |
[[0.5, 0.5, 1.0, 1.0, 0.0], [0.5, 0.5, 1.0, 1.0, 0.0]], | |
dtype=torch.float32, | |
device=device, | |
) | |
boxes2 = torch.tensor( | |
[ | |
[0.5, 0.5, 1.0, 1.0, 0.0], | |
[0.25, 0.5, 0.5, 1.0, 0.0], | |
[0.5, 0.25, 1.0, 0.5, 0.0], | |
[0.25, 0.25, 0.5, 0.5, 0.0], | |
[0.75, 0.75, 0.5, 0.5, 0.0], | |
[1.0, 1.0, 1.0, 1.0, 0.0], | |
], | |
dtype=torch.float32, | |
device=device, | |
) | |
expected_ious = torch.tensor( | |
[ | |
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)], | |
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)], | |
], | |
dtype=torch.float32, | |
device=device, | |
) | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_pairwise_iou_45_degrees(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor( | |
[ | |
[1, 1, math.sqrt(2), math.sqrt(2), 45], | |
[1, 1, 2 * math.sqrt(2), 2 * math.sqrt(2), -45], | |
], | |
dtype=torch.float32, | |
device=device, | |
) | |
boxes2 = torch.tensor([[1, 1, 2, 2, 0]], dtype=torch.float32, device=device) | |
expected_ious = torch.tensor([[0.5], [0.5]], dtype=torch.float32, device=device) | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_pairwise_iou_orthogonal(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor([[5, 5, 10, 6, 55]], dtype=torch.float32, device=device) | |
boxes2 = torch.tensor([[5, 5, 10, 6, -35]], dtype=torch.float32, device=device) | |
iou = (6.0 * 6.0) / (6.0 * 6.0 + 4.0 * 6.0 + 4.0 * 6.0) | |
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_pairwise_iou_large_close_boxes(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
boxes1 = torch.tensor( | |
[[299.500000, 417.370422, 600.000000, 364.259186, 27.1828]], | |
dtype=torch.float32, | |
device=device, | |
) | |
boxes2 = torch.tensor( | |
[[299.500000, 417.370422, 600.000000, 364.259155, 27.1828]], | |
dtype=torch.float32, | |
device=device, | |
) | |
iou = 364.259155 / 364.259186 | |
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_pairwise_iou_many_boxes(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
num_boxes1 = 100 | |
num_boxes2 = 200 | |
boxes1 = torch.stack( | |
[ | |
torch.tensor( | |
[5 + 20 * i, 5 + 20 * i, 10, 10, 0], | |
dtype=torch.float32, | |
device=device, | |
) | |
for i in range(num_boxes1) | |
] | |
) | |
boxes2 = torch.stack( | |
[ | |
torch.tensor( | |
[5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0], | |
dtype=torch.float32, | |
device=device, | |
) | |
for i in range(num_boxes2) | |
] | |
) | |
expected_ious = torch.zeros(num_boxes1, num_boxes2, dtype=torch.float32, device=device) | |
for i in range(min(num_boxes1, num_boxes2)): | |
expected_ious[i][i] = (1 + 9 * i / num_boxes2) / 10.0 | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_pairwise_iou_issue1207_simplified(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
# Simplified test case of D2-issue-1207 | |
boxes1 = torch.tensor([[3, 3, 8, 2, -45.0]], device=device) | |
boxes2 = torch.tensor([[6, 0, 8, 2, -45.0]], device=device) | |
iou = 0.0 | |
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_pairwise_iou_issue1207(self): | |
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): | |
# The original test case in D2-issue-1207 | |
boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device) | |
boxes2 = torch.tensor([[190.0, 127.0, 80.0, 21.0, -46.0]], device=device) | |
iou = 0.0 | |
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) | |
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) | |
self.assertTrue(torch.allclose(ious, expected_ious)) | |
def test_empty_cat(self): | |
x = RotatedBoxes.cat([]) | |
self.assertTrue(x.tensor.shape, (0, 5)) | |
def test_scriptability(self): | |
def func(x): | |
boxes = RotatedBoxes(x) | |
test = boxes.to(torch.device("cpu")).tensor | |
return boxes.area(), test | |
f = torch.jit.script(func) | |
f = reload_script_model(f) | |
f(torch.rand((3, 5))) | |
data = torch.rand((3, 5)) | |
def func_cat(x: torch.Tensor): | |
boxes1 = RotatedBoxes(x) | |
boxes2 = RotatedBoxes(x) | |
# this is not supported by torchscript for now. | |
# boxes3 = RotatedBoxes.cat([boxes1, boxes2]) | |
boxes3 = boxes1.cat([boxes1, boxes2]) | |
return boxes3 | |
f = torch.jit.script(func_cat) | |
script_box = f(data) | |
self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor)) | |
def benchmark_rotated_iou(): | |
num_boxes1 = 200 | |
num_boxes2 = 500 | |
boxes1 = torch.stack( | |
[ | |
torch.tensor([5 + 20 * i, 5 + 20 * i, 10, 10, 0], dtype=torch.float32) | |
for i in range(num_boxes1) | |
] | |
) | |
boxes2 = torch.stack( | |
[ | |
torch.tensor( | |
[5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0], | |
dtype=torch.float32, | |
) | |
for i in range(num_boxes2) | |
] | |
) | |
def func(dev, n=1): | |
b1 = boxes1.to(device=dev) | |
b2 = boxes2.to(device=dev) | |
def bench(): | |
for _ in range(n): | |
pairwise_iou_rotated(b1, b2) | |
if dev.type == "cuda": | |
torch.cuda.synchronize() | |
return bench | |
# only run it once per timed loop, since it's slow | |
args = [{"dev": torch.device("cpu"), "n": 1}] | |
if torch.cuda.is_available(): | |
args.append({"dev": torch.device("cuda"), "n": 10}) | |
benchmark(func, "rotated_iou", args, warmup_iters=3) | |
if __name__ == "__main__": | |
unittest.main() | |
benchmark_rotated_iou() | |