Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import io | |
import unittest | |
import warnings | |
import torch | |
from torch.hub import _check_module_exists | |
from detectron2 import model_zoo | |
from detectron2.config import get_cfg | |
from detectron2.export import STABLE_ONNX_OPSET_VERSION | |
from detectron2.export.flatten import TracingAdapter | |
from detectron2.export.torchscript_patch import patch_builtin_len | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling import build_model | |
from detectron2.modeling.roi_heads import KRCNNConvDeconvUpsampleHead | |
from detectron2.structures import Boxes, Instances | |
from detectron2.utils.testing import ( | |
_pytorch1111_symbolic_opset9_repeat_interleave, | |
_pytorch1111_symbolic_opset9_to, | |
get_sample_coco_image, | |
has_dynamic_axes, | |
random_boxes, | |
register_custom_op_onnx_export, | |
skipIfOnCPUCI, | |
skipIfUnsupportedMinOpsetVersion, | |
skipIfUnsupportedMinTorchVersion, | |
unregister_custom_op_onnx_export, | |
) | |
class TestONNXTracingExport(unittest.TestCase): | |
opset_version = STABLE_ONNX_OPSET_VERSION | |
def testMaskRCNNFPN(self): | |
def inference_func(model, images): | |
with warnings.catch_warnings(record=True): | |
inputs = [{"image": image} for image in images] | |
inst = model.inference(inputs, do_postprocess=False)[0] | |
return [{"instances": inst}] | |
self._test_model_zoo_from_config_path( | |
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func | |
) | |
def testMaskRCNNC4(self): | |
def inference_func(model, image): | |
inputs = [{"image": image}] | |
return model.inference(inputs, do_postprocess=False)[0] | |
self._test_model_zoo_from_config_path( | |
"COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml", inference_func | |
) | |
def testCascadeRCNN(self): | |
def inference_func(model, image): | |
inputs = [{"image": image}] | |
return model.inference(inputs, do_postprocess=False)[0] | |
self._test_model_zoo_from_config_path( | |
"Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml", inference_func | |
) | |
def testRetinaNet(self): | |
def inference_func(model, image): | |
return model.forward([{"image": image}])[0]["instances"] | |
self._test_model_zoo_from_config_path( | |
"COCO-Detection/retinanet_R_50_FPN_3x.yaml", inference_func | |
) | |
def testMaskRCNNFPN_batched(self): | |
def inference_func(model, image1, image2): | |
inputs = [{"image": image1}, {"image": image2}] | |
return model.inference(inputs, do_postprocess=False) | |
self._test_model_zoo_from_config_path( | |
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func, batch=2 | |
) | |
def testMaskRCNNFPN_with_postproc(self): | |
def inference_func(model, image): | |
inputs = [{"image": image, "height": image.shape[1], "width": image.shape[2]}] | |
return model.inference(inputs, do_postprocess=True)[0]["instances"] | |
self._test_model_zoo_from_config_path( | |
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", | |
inference_func, | |
) | |
def testKeypointHead(self): | |
class M(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.model = KRCNNConvDeconvUpsampleHead( | |
ShapeSpec(channels=4, height=14, width=14), num_keypoints=17, conv_dims=(4,) | |
) | |
def forward(self, x, predbox1, predbox2): | |
inst = [ | |
Instances((100, 100), pred_boxes=Boxes(predbox1)), | |
Instances((100, 100), pred_boxes=Boxes(predbox2)), | |
] | |
ret = self.model(x, inst) | |
return tuple(x.pred_keypoints for x in ret) | |
model = M() | |
model.eval() | |
def gen_input(num1, num2): | |
feat = torch.randn((num1 + num2, 4, 14, 14)) | |
box1 = random_boxes(num1) | |
box2 = random_boxes(num2) | |
return feat, box1, box2 | |
with patch_builtin_len(): | |
onnx_model = self._test_model( | |
model, | |
gen_input(1, 2), | |
input_names=["features", "pred_boxes", "pred_classes"], | |
output_names=["box1", "box2"], | |
dynamic_axes={ | |
"features": {0: "batch", 1: "static_four", 2: "height", 3: "width"}, | |
"pred_boxes": {0: "batch", 1: "static_four"}, | |
"pred_classes": {0: "batch", 1: "static_four"}, | |
"box1": {0: "num_instance", 1: "K", 2: "static_three"}, | |
"box2": {0: "num_instance", 1: "K", 2: "static_three"}, | |
}, | |
) | |
# Although ONNX models are not executable by PyTorch to verify | |
# support of batches with different sizes, we can verify model's IR | |
# does not hard-code input and/or output shapes. | |
# TODO: Add tests with different batch sizes when detectron2's CI | |
# support ONNX Runtime backend. | |
assert has_dynamic_axes(onnx_model) | |
################################################################################ | |
# Testcase internals - DO NOT add tests below this point | |
################################################################################ | |
def setUp(self): | |
register_custom_op_onnx_export("::to", _pytorch1111_symbolic_opset9_to, 9, "1.11.1") | |
register_custom_op_onnx_export( | |
"::repeat_interleave", | |
_pytorch1111_symbolic_opset9_repeat_interleave, | |
9, | |
"1.11.1", | |
) | |
def tearDown(self): | |
unregister_custom_op_onnx_export("::to", 9, "1.11.1") | |
unregister_custom_op_onnx_export("::repeat_interleave", 9, "1.11.1") | |
def _test_model( | |
self, | |
model, | |
inputs, | |
inference_func=None, | |
opset_version=STABLE_ONNX_OPSET_VERSION, | |
save_onnx_graph_path=None, | |
**export_kwargs, | |
): | |
# Not imported in the beginning of file to prevent runtime errors | |
# for environments without ONNX. | |
# This testcase checks dependencies before running | |
import onnx # isort:skip | |
f = io.BytesIO() | |
adapter_model = TracingAdapter(model, inputs, inference_func) | |
adapter_model.eval() | |
with torch.no_grad(): | |
try: | |
torch.onnx.enable_log() | |
except AttributeError: | |
# Older ONNX versions does not have this API | |
pass | |
torch.onnx.export( | |
adapter_model, | |
adapter_model.flattened_inputs, | |
f, | |
training=torch.onnx.TrainingMode.EVAL, | |
opset_version=opset_version, | |
verbose=True, | |
**export_kwargs, | |
) | |
onnx_model = onnx.load_from_string(f.getvalue()) | |
assert onnx_model is not None | |
if save_onnx_graph_path: | |
onnx.save(onnx_model, save_onnx_graph_path) | |
return onnx_model | |
def _test_model_zoo_from_config_path( | |
self, | |
config_path, | |
inference_func, | |
batch=1, | |
opset_version=STABLE_ONNX_OPSET_VERSION, | |
save_onnx_graph_path=None, | |
**export_kwargs, | |
): | |
model = model_zoo.get(config_path, trained=True) | |
image = get_sample_coco_image() | |
inputs = tuple(image.clone() for _ in range(batch)) | |
return self._test_model( | |
model, inputs, inference_func, opset_version, save_onnx_graph_path, **export_kwargs | |
) | |
def _test_model_from_config_path( | |
self, | |
config_path, | |
inference_func, | |
batch=1, | |
opset_version=STABLE_ONNX_OPSET_VERSION, | |
save_onnx_graph_path=None, | |
**export_kwargs, | |
): | |
from projects.PointRend import point_rend # isort:skip | |
cfg = get_cfg() | |
cfg.DATALOADER.NUM_WORKERS = 0 | |
point_rend.add_pointrend_config(cfg) | |
cfg.merge_from_file(config_path) | |
cfg.freeze() | |
model = build_model(cfg) | |
image = get_sample_coco_image() | |
inputs = tuple(image.clone() for _ in range(batch)) | |
return self._test_model( | |
model, inputs, inference_func, opset_version, save_onnx_graph_path, **export_kwargs | |
) | |