Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import functools | |
import json | |
import multiprocessing as mp | |
import numpy as np | |
import os | |
import time | |
from fvcore.common.download import download | |
from panopticapi.utils import rgb2id | |
from PIL import Image | |
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES | |
def _process_panoptic_to_semantic(input_panoptic, output_semantic, segments, id_map): | |
panoptic = np.asarray(Image.open(input_panoptic), dtype=np.uint32) | |
panoptic = rgb2id(panoptic) | |
output = np.zeros_like(panoptic, dtype=np.uint8) + 255 | |
for seg in segments: | |
cat_id = seg["category_id"] | |
new_cat_id = id_map[cat_id] | |
output[panoptic == seg["id"]] = new_cat_id | |
Image.fromarray(output).save(output_semantic) | |
def separate_coco_semantic_from_panoptic(panoptic_json, panoptic_root, sem_seg_root, categories): | |
""" | |
Create semantic segmentation annotations from panoptic segmentation | |
annotations, to be used by PanopticFPN. | |
It maps all thing categories to class 0, and maps all unlabeled pixels to class 255. | |
It maps all stuff categories to contiguous ids starting from 1. | |
Args: | |
panoptic_json (str): path to the panoptic json file, in COCO's format. | |
panoptic_root (str): a directory with panoptic annotation files, in COCO's format. | |
sem_seg_root (str): a directory to output semantic annotation files | |
categories (list[dict]): category metadata. Each dict needs to have: | |
"id": corresponds to the "category_id" in the json annotations | |
"isthing": 0 or 1 | |
""" | |
os.makedirs(sem_seg_root, exist_ok=True) | |
stuff_ids = [k["id"] for k in categories if k["isthing"] == 0] | |
thing_ids = [k["id"] for k in categories if k["isthing"] == 1] | |
id_map = {} # map from category id to id in the output semantic annotation | |
assert len(stuff_ids) <= 254 | |
for i, stuff_id in enumerate(stuff_ids): | |
id_map[stuff_id] = i + 1 | |
for thing_id in thing_ids: | |
id_map[thing_id] = 0 | |
id_map[0] = 255 | |
with open(panoptic_json) as f: | |
obj = json.load(f) | |
pool = mp.Pool(processes=max(mp.cpu_count() // 2, 4)) | |
def iter_annotations(): | |
for anno in obj["annotations"]: | |
file_name = anno["file_name"] | |
segments = anno["segments_info"] | |
input = os.path.join(panoptic_root, file_name) | |
output = os.path.join(sem_seg_root, file_name) | |
yield input, output, segments | |
print("Start writing to {} ...".format(sem_seg_root)) | |
start = time.time() | |
pool.starmap( | |
functools.partial(_process_panoptic_to_semantic, id_map=id_map), | |
iter_annotations(), | |
chunksize=100, | |
) | |
print("Finished. time: {:.2f}s".format(time.time() - start)) | |
if __name__ == "__main__": | |
dataset_dir = os.path.join(os.getenv("DETECTRON2_DATASETS", "datasets"), "coco") | |
for s in ["val2017", "train2017"]: | |
separate_coco_semantic_from_panoptic( | |
os.path.join(dataset_dir, "annotations/panoptic_{}.json".format(s)), | |
os.path.join(dataset_dir, "panoptic_{}".format(s)), | |
os.path.join(dataset_dir, "panoptic_stuff_{}".format(s)), | |
COCO_CATEGORIES, | |
) | |
# Prepare val2017_100 for quick testing: | |
dest_dir = os.path.join(dataset_dir, "annotations/") | |
URL_PREFIX = "https://dl.fbaipublicfiles.com/detectron2/" | |
download(URL_PREFIX + "annotations/coco/panoptic_val2017_100.json", dest_dir) | |
with open(os.path.join(dest_dir, "panoptic_val2017_100.json")) as f: | |
obj = json.load(f) | |
def link_val100(dir_full, dir_100): | |
print("Creating " + dir_100 + " ...") | |
os.makedirs(dir_100, exist_ok=True) | |
for img in obj["images"]: | |
basename = os.path.splitext(img["file_name"])[0] | |
src = os.path.join(dir_full, basename + ".png") | |
dst = os.path.join(dir_100, basename + ".png") | |
src = os.path.relpath(src, start=dir_100) | |
os.symlink(src, dst) | |
link_val100( | |
os.path.join(dataset_dir, "panoptic_val2017"), | |
os.path.join(dataset_dir, "panoptic_val2017_100"), | |
) | |
link_val100( | |
os.path.join(dataset_dir, "panoptic_stuff_val2017"), | |
os.path.join(dataset_dir, "panoptic_stuff_val2017_100"), | |
) | |