Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
import argparse | |
import glob | |
import logging | |
import os | |
import sys | |
from typing import Any, ClassVar, Dict, List | |
import cv2 | |
import numpy as np | |
import torch | |
from densepose import add_densepose_config | |
from densepose.structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput | |
from densepose.utils.logger import verbosity_to_level | |
from densepose.vis.base import CompoundVisualizer | |
from densepose.vis.bounding_box import ScoredBoundingBoxVisualizer | |
from densepose.vis.densepose_outputs_vertex import (DensePoseOutputsTextureVisualizer, DensePoseOutputsVertexVisualizer, | |
get_texture_atlases) | |
from densepose.vis.densepose_results import (DensePoseResultsContourVisualizer, | |
DensePoseResultsFineSegmentationVisualizer, DensePoseResultsUVisualizer, | |
DensePoseResultsVVisualizer) | |
from densepose.vis.densepose_results_textures import DensePoseResultsVisualizerWithTexture, get_texture_atlas | |
from densepose.vis.extractor import (CompoundExtractor, DensePoseOutputsExtractor, DensePoseResultExtractor, | |
create_extractor) | |
from detectron2.config import CfgNode, get_cfg | |
from detectron2.data.detection_utils import read_image | |
from detectron2.engine.defaults import DefaultPredictor | |
from detectron2.structures.instances import Instances | |
from detectron2.utils.logger import setup_logger | |
from PIL import Image | |
DOC = """Apply Net - a tool to print / visualize DensePose results | |
""" | |
LOGGER_NAME = "apply_net" | |
logger = logging.getLogger(LOGGER_NAME) | |
_ACTION_REGISTRY: Dict[str, "Action"] = {} | |
class Action(object): | |
def add_arguments(cls, parser: argparse.ArgumentParser): | |
parser.add_argument( | |
"-v", | |
"--verbosity", | |
action="count", | |
help="Verbose mode. Multiple -v options increase the verbosity.", | |
) | |
def register_action(cls): | |
""" | |
Decorator for action classes to automate action registration | |
""" | |
global _ACTION_REGISTRY | |
_ACTION_REGISTRY[cls.COMMAND] = cls | |
return cls | |
class InferenceAction(Action): | |
def add_arguments(cls, parser: argparse.ArgumentParser): | |
super(InferenceAction, cls).add_arguments(parser) | |
parser.add_argument("cfg", metavar="<config>", help="Config file") | |
parser.add_argument("model", metavar="<model>", help="Model file") | |
parser.add_argument("input", metavar="<input>", help="Input data") | |
parser.add_argument( | |
"--opts", | |
help="Modify config options using the command-line 'KEY VALUE' pairs", | |
default=[], | |
nargs=argparse.REMAINDER, | |
) | |
def execute(cls, args: argparse.Namespace): | |
logger.info(f"Loading config from {args.cfg}") | |
opts = [] | |
cfg = cls.setup_config(args.cfg, args.model, args, opts) | |
logger.info(f"Loading model from {args.model}") | |
predictor = DefaultPredictor(cfg) | |
logger.info(f"Loading data from {args.input}") | |
file_list = cls._get_input_file_list(args.input) | |
if len(file_list) == 0: | |
logger.warning(f"No input images for {args.input}") | |
return | |
context = cls.create_context(args, cfg) | |
for file_name in file_list: | |
img = read_image(file_name, format="BGR") # predictor expects BGR image. | |
with torch.no_grad(): | |
outputs = predictor(img)["instances"] | |
cls.execute_on_outputs(context, {"file_name": file_name, "image": img}, outputs) | |
cls.postexecute(context) | |
def setup_config( | |
cls, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str] | |
): | |
cfg = get_cfg() | |
add_densepose_config(cfg) | |
cfg.merge_from_file(config_fpath) | |
cfg.merge_from_list(args.opts) | |
if opts: | |
cfg.merge_from_list(opts) | |
cfg.MODEL.WEIGHTS = model_fpath | |
cfg.freeze() | |
return cfg | |
def _get_input_file_list(cls, input_spec: str): | |
if os.path.isdir(input_spec): | |
file_list = [ | |
os.path.join(input_spec, fname) | |
for fname in os.listdir(input_spec) | |
if os.path.isfile(os.path.join(input_spec, fname)) | |
] | |
elif os.path.isfile(input_spec): | |
file_list = [input_spec] | |
else: | |
file_list = glob.glob(input_spec) | |
return file_list | |
class DumpAction(InferenceAction): | |
""" | |
Dump action that outputs results to a pickle file | |
""" | |
COMMAND: ClassVar[str] = "dump" | |
def add_parser(cls, subparsers: argparse._SubParsersAction): | |
parser = subparsers.add_parser(cls.COMMAND, help="Dump model outputs to a file.") | |
cls.add_arguments(parser) | |
parser.set_defaults(func=cls.execute) | |
def add_arguments(cls, parser: argparse.ArgumentParser): | |
super(DumpAction, cls).add_arguments(parser) | |
parser.add_argument( | |
"--output", | |
metavar="<dump_file>", | |
default="results.pkl", | |
help="File name to save dump to", | |
) | |
def execute_on_outputs( | |
cls, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances | |
): | |
image_fpath = entry["file_name"] | |
logger.info(f"Processing {image_fpath}") | |
result = {"file_name": image_fpath} | |
if outputs.has("scores"): | |
result["scores"] = outputs.get("scores").cpu() | |
if outputs.has("pred_boxes"): | |
result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu() | |
if outputs.has("pred_densepose"): | |
if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput): | |
extractor = DensePoseResultExtractor() | |
elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput): | |
extractor = DensePoseOutputsExtractor() | |
result["pred_densepose"] = extractor(outputs)[0] | |
context["results"].append(result) | |
def create_context(cls, args: argparse.Namespace, cfg: CfgNode): | |
context = {"results": [], "out_fname": args.output} | |
return context | |
def postexecute(cls, context: Dict[str, Any]): | |
out_fname = context["out_fname"] | |
out_dir = os.path.dirname(out_fname) | |
if len(out_dir) > 0 and not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
with open(out_fname, "wb") as hFile: | |
torch.save(context["results"], hFile) | |
logger.info(f"Output saved to {out_fname}") | |
class ShowAction(InferenceAction): | |
""" | |
Show action that visualizes selected entries on an image | |
""" | |
COMMAND: ClassVar[str] = "show" | |
VISUALIZERS: ClassVar[Dict[str, object]] = { | |
"dp_contour": DensePoseResultsContourVisualizer, | |
"dp_segm": DensePoseResultsFineSegmentationVisualizer, | |
"dp_u": DensePoseResultsUVisualizer, | |
"dp_v": DensePoseResultsVVisualizer, | |
"dp_iuv_texture": DensePoseResultsVisualizerWithTexture, | |
"dp_cse_texture": DensePoseOutputsTextureVisualizer, | |
"dp_vertex": DensePoseOutputsVertexVisualizer, | |
"bbox": ScoredBoundingBoxVisualizer, | |
} | |
def add_parser(cls, subparsers: argparse._SubParsersAction): | |
parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries") | |
cls.add_arguments(parser) | |
parser.set_defaults(func=cls.execute) | |
def add_arguments(cls, parser: argparse.ArgumentParser): | |
super(ShowAction, cls).add_arguments(parser) | |
parser.add_argument( | |
"visualizations", | |
metavar="<visualizations>", | |
help="Comma separated list of visualizations, possible values: " | |
"[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))), | |
) | |
parser.add_argument( | |
"--min_score", | |
metavar="<score>", | |
default=0.8, | |
type=float, | |
help="Minimum detection score to visualize", | |
) | |
parser.add_argument( | |
"--nms_thresh", metavar="<threshold>", default=None, type=float, help="NMS threshold" | |
) | |
parser.add_argument( | |
"--texture_atlas", | |
metavar="<texture_atlas>", | |
default=None, | |
help="Texture atlas file (for IUV texture transfer)", | |
) | |
parser.add_argument( | |
"--texture_atlases_map", | |
metavar="<texture_atlases_map>", | |
default=None, | |
help="JSON string of a dict containing texture atlas files for each mesh", | |
) | |
parser.add_argument( | |
"--output", | |
metavar="<image_file>", | |
default="outputres.png", | |
help="File name to save output to", | |
) | |
def setup_config( | |
cls, config_fpath: str, model_fpath: str, args: argparse.Namespace, opts: List[str] | |
): | |
opts.append("MODEL.ROI_HEADS.SCORE_THRESH_TEST") | |
opts.append(str(args.min_score)) | |
if args.nms_thresh is not None: | |
opts.append("MODEL.ROI_HEADS.NMS_THRESH_TEST") | |
opts.append(str(args.nms_thresh)) | |
cfg = super(ShowAction, cls).setup_config(config_fpath, model_fpath, args, opts) | |
return cfg | |
def execute_on_outputs( | |
cls, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances | |
): | |
import cv2 | |
import numpy as np | |
visualizer = context["visualizer"] | |
extractor = context["extractor"] | |
image_fpath = entry["file_name"] | |
logger.info(f"Processing {image_fpath}") | |
image = cv2.cvtColor(entry["image"], cv2.COLOR_BGR2GRAY) | |
image = np.tile(image[:, :, np.newaxis], [1, 1, 3]) | |
data = extractor(outputs) | |
image_vis = visualizer.visualize(image, data) | |
entry_idx = context["entry_idx"] + 1 | |
out_fname = cls._get_out_fname(entry_idx, context["out_fname"]) | |
out_dir = os.path.dirname(out_fname) | |
if len(out_dir) > 0 and not os.path.exists(out_dir): | |
os.makedirs(out_dir) | |
cv2.imwrite(out_fname, image_vis) | |
logger.info(f"Output saved to {out_fname}") | |
context["entry_idx"] += 1 | |
def postexecute(cls, context: Dict[str, Any]): | |
pass | |
def _get_out_fname(cls, entry_idx: int, fname_base: str): | |
base, ext = os.path.splitext(fname_base) | |
return base + ".{0:04d}".format(entry_idx) + ext | |
def create_context(cls, args: argparse.Namespace, cfg: CfgNode) -> Dict[str, Any]: | |
vis_specs = args.visualizations.split(",") | |
visualizers = [] | |
extractors = [] | |
for vis_spec in vis_specs: | |
texture_atlas = get_texture_atlas(args.texture_atlas) | |
texture_atlases_dict = get_texture_atlases(args.texture_atlases_map) | |
vis = cls.VISUALIZERS[vis_spec]( | |
cfg=cfg, | |
texture_atlas=texture_atlas, | |
texture_atlases_dict=texture_atlases_dict, | |
) | |
visualizers.append(vis) | |
extractor = create_extractor(vis) | |
extractors.append(extractor) | |
visualizer = CompoundVisualizer(visualizers) | |
extractor = CompoundExtractor(extractors) | |
context = { | |
"extractor": extractor, | |
"visualizer": visualizer, | |
"out_fname": args.output, | |
"entry_idx": 0, | |
} | |
return context | |
class GetAction(InferenceAction): | |
""" | |
Get action that outputs results to a pickle file | |
""" | |
COMMAND: ClassVar[str] = "get" | |
def add_parser(cls, subparsers: argparse._SubParsersAction): | |
parser = subparsers.add_parser(cls.COMMAND, help="Get model outputs to a file.") | |
cls.add_arguments(parser) | |
parser.set_defaults(func=cls.execute) | |
def add_arguments(cls, parser: argparse.ArgumentParser): | |
super(GetAction, cls).add_arguments(parser) | |
parser.add_argument( | |
"--output", | |
metavar="<dump_file>", | |
default="", | |
help="File name to save images to", | |
) | |
def execute_on_outputs( | |
cls, context: Dict[str, Any], entry: Dict[str, Any], outputs: Instances | |
): | |
image_fpath = entry["file_name"] | |
logger.info(f"Processing {image_fpath}") | |
result = {"file_name": image_fpath} | |
if outputs.has("scores"): | |
result["scores"] = outputs.get("scores").cpu() | |
if outputs.has("pred_boxes"): | |
result["pred_boxes_XYXY"] = outputs.get("pred_boxes").tensor.cpu() | |
if outputs.has("pred_densepose"): | |
if isinstance(outputs.pred_densepose, DensePoseChartPredictorOutput): | |
extractor = DensePoseResultExtractor() | |
elif isinstance(outputs.pred_densepose, DensePoseEmbeddingPredictorOutput): | |
extractor = DensePoseOutputsExtractor() | |
result["pred_densepose"] = extractor(outputs)[0] | |
# decode | |
out_dir = context["out_fname"] | |
H, W, _ = entry['image'].shape | |
i = result['pred_densepose'][0].labels.cpu().numpy() | |
i_scale = (i.astype(np.float32) * 255 / 24).astype(np.uint8) | |
i_color = cv2.applyColorMap(i_scale, cv2.COLORMAP_PARULA) | |
i_color = cv2.cvtColor(i_color, cv2.COLOR_RGB2BGR) | |
i_color[i == 0] = [0, 0, 0] | |
box = result["pred_boxes_XYXY"][0] | |
box[2] = box[2] - box[0] | |
box[3] = box[3] - box[1] | |
x, y, w, h = [int(v) for v in box] | |
bg = np.zeros((H, W, 3)) | |
bg[y:y + h, x:x + w, :] = i_color | |
bg_img = Image.fromarray(np.uint8(bg), "RGB") | |
os.makedirs(out_dir, exist_ok=True) | |
bg_img.save(os.path.join(out_dir, os.path.splitext(os.path.basename(result['file_name']))[0] + '.jpg')) | |
def create_context(cls, args: argparse.Namespace, cfg: CfgNode): | |
context = {"results": [], "out_fname": args.output} | |
return context | |
def postexecute(cls, context: Dict[str, Any]): | |
pass | |
def create_argument_parser() -> argparse.ArgumentParser: | |
parser = argparse.ArgumentParser( | |
description=DOC, | |
formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120), | |
) | |
parser.set_defaults(func=lambda _: parser.print_help(sys.stdout)) | |
subparsers = parser.add_subparsers(title="Actions") | |
for _, action in _ACTION_REGISTRY.items(): | |
action.add_parser(subparsers) | |
return parser | |
def main(): | |
parser = create_argument_parser() | |
args = parser.parse_args() | |
verbosity = args.verbosity if hasattr(args, "verbosity") else None | |
global logger | |
logger = setup_logger(name=LOGGER_NAME) | |
logger.setLevel(verbosity_to_level(verbosity)) | |
args.func(args) | |
if __name__ == "__main__": | |
main() | |