Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
""" | |
Panoptic-DeepLab Training Script. | |
This script is a simplified version of the training script in detectron2/tools. | |
""" | |
import os | |
import detectron2.data.transforms as T | |
import torch | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import build_detection_train_loader, MetadataCatalog | |
from detectron2.engine import ( | |
default_argument_parser, | |
default_setup, | |
DefaultTrainer, | |
launch, | |
) | |
from detectron2.evaluation import ( | |
CityscapesInstanceEvaluator, | |
CityscapesSemSegEvaluator, | |
COCOEvaluator, | |
COCOPanopticEvaluator, | |
DatasetEvaluators, | |
) | |
from detectron2.projects.deeplab import build_lr_scheduler | |
from detectron2.projects.panoptic_deeplab import ( | |
add_panoptic_deeplab_config, | |
PanopticDeeplabDatasetMapper, | |
) | |
from detectron2.solver import get_default_optimizer_params | |
from detectron2.solver.build import maybe_add_gradient_clipping | |
def build_sem_seg_train_aug(cfg): | |
augs = [ | |
T.ResizeShortestEdge( | |
cfg.INPUT.MIN_SIZE_TRAIN, | |
cfg.INPUT.MAX_SIZE_TRAIN, | |
cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING, | |
) | |
] | |
if cfg.INPUT.CROP.ENABLED: | |
augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)) | |
augs.append(T.RandomFlip()) | |
return augs | |
class Trainer(DefaultTrainer): | |
""" | |
We use the "DefaultTrainer" which contains a number pre-defined logic for | |
standard training workflow. They may not work for you, especially if you | |
are working on a new research project. In that case you can use the cleaner | |
"SimpleTrainer", or write your own training loop. | |
""" | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each builtin dataset. | |
For your own dataset, you can simply create an evaluator manually in your | |
script and do not have to worry about the hacky if-else logic here. | |
""" | |
if cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED: | |
return None | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluator_list = [] | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg"]: | |
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) | |
if evaluator_type == "cityscapes_panoptic_seg": | |
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) | |
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name)) | |
if evaluator_type == "coco_panoptic_seg": | |
# `thing_classes` in COCO panoptic metadata includes both thing and | |
# stuff classes for visualization. COCOEvaluator requires metadata | |
# which only contains thing classes, thus we map the name of | |
# panoptic datasets to their corresponding instance datasets. | |
dataset_name_mapper = { | |
"coco_2017_val_panoptic": "coco_2017_val", | |
"coco_2017_val_100_panoptic": "coco_2017_val_100", | |
} | |
evaluator_list.append( | |
COCOEvaluator( | |
dataset_name_mapper[dataset_name], output_dir=output_folder | |
) | |
) | |
if len(evaluator_list) == 0: | |
raise NotImplementedError( | |
"no Evaluator for the dataset {} with the type {}".format( | |
dataset_name, evaluator_type | |
) | |
) | |
elif len(evaluator_list) == 1: | |
return evaluator_list[0] | |
return DatasetEvaluators(evaluator_list) | |
def build_train_loader(cls, cfg): | |
mapper = PanopticDeeplabDatasetMapper( | |
cfg, augmentations=build_sem_seg_train_aug(cfg) | |
) | |
return build_detection_train_loader(cfg, mapper=mapper) | |
def build_lr_scheduler(cls, cfg, optimizer): | |
""" | |
It now calls :func:`detectron2.solver.build_lr_scheduler`. | |
Overwrite it if you'd like a different scheduler. | |
""" | |
return build_lr_scheduler(cfg, optimizer) | |
def build_optimizer(cls, cfg, model): | |
""" | |
Build an optimizer from config. | |
""" | |
params = get_default_optimizer_params( | |
model, | |
weight_decay=cfg.SOLVER.WEIGHT_DECAY, | |
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, | |
) | |
optimizer_type = cfg.SOLVER.OPTIMIZER | |
if optimizer_type == "SGD": | |
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)( | |
params, | |
cfg.SOLVER.BASE_LR, | |
momentum=cfg.SOLVER.MOMENTUM, | |
nesterov=cfg.SOLVER.NESTEROV, | |
) | |
elif optimizer_type == "ADAM": | |
return maybe_add_gradient_clipping(cfg, torch.optim.Adam)( | |
params, cfg.SOLVER.BASE_LR | |
) | |
else: | |
raise NotImplementedError(f"no optimizer type {optimizer_type}") | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
add_panoptic_deeplab_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
return res | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
def invoke_main() -> None: | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |
if __name__ == "__main__": | |
invoke_main() # pragma: no cover | |