Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
import copy | |
import logging | |
import numpy as np | |
from typing import List, Union | |
import torch | |
import detectron2.data.detection_utils as utils | |
import detectron2.data.transforms as T | |
from detectron2.config import configurable | |
from .detection_utils import annotations_to_instances, transform_instance_annotations | |
__all__ = [ | |
"PointSupDatasetMapper", | |
] | |
class PointSupDatasetMapper: | |
""" | |
The callable currently does the following: | |
1. Read the image from "file_name" | |
2. Applies transforms to the image and annotations | |
3. Prepare data and annotations to Tensor and :class:`Instances` | |
""" | |
def __init__( | |
self, | |
is_train: bool, | |
*, | |
augmentations: List[Union[T.Augmentation, T.Transform]], | |
image_format: str, | |
# Extra data augmentation for point supervision | |
sample_points: int = 0, | |
): | |
""" | |
NOTE: this interface is experimental. | |
Args: | |
is_train: whether it's used in training or inference | |
augmentations: a list of augmentations or deterministic transforms to apply | |
image_format: an image format supported by :func:`detection_utils.read_image`. | |
sample_points: subsample points at each iteration | |
""" | |
# fmt: off | |
self.is_train = is_train | |
self.augmentations = T.AugmentationList(augmentations) | |
self.image_format = image_format | |
self.sample_points = sample_points | |
# fmt: on | |
logger = logging.getLogger(__name__) | |
mode = "training" if is_train else "inference" | |
logger.info(f"[DatasetMapper] Augmentations used in {mode}: {augmentations}") | |
logger.info(f"Point Augmentations used in {mode}: sample {sample_points} points") | |
def from_config(cls, cfg, is_train: bool = True): | |
augs = utils.build_augmentation(cfg, is_train) | |
if cfg.INPUT.CROP.ENABLED and is_train: | |
raise ValueError("Crop augmentation not supported to point supervision.") | |
ret = { | |
"is_train": is_train, | |
"augmentations": augs, | |
"image_format": cfg.INPUT.FORMAT, | |
"sample_points": cfg.INPUT.SAMPLE_POINTS, | |
} | |
return ret | |
def __call__(self, dataset_dict): | |
""" | |
Args: | |
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. | |
Returns: | |
dict: a format that builtin models in detectron2 accept | |
""" | |
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below | |
image = utils.read_image(dataset_dict["file_name"], format=self.image_format) | |
utils.check_image_size(dataset_dict, image) | |
aug_input = T.AugInput(image) | |
transforms = self.augmentations(aug_input) | |
image = aug_input.image | |
image_shape = image.shape[:2] # h, w | |
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, | |
# but not efficient on large generic data structures due to the use of pickle & mp.Queue. | |
# Therefore it's important to use torch.Tensor. | |
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) | |
if not self.is_train: | |
dataset_dict.pop("annotations", None) | |
return dataset_dict | |
if "annotations" in dataset_dict: | |
# Maps points from the closed interval [0, image_size - 1] on discrete | |
# image coordinates to the half-open interval [x1, x2) on continuous image | |
# coordinates. We use the continuous-discrete conversion from Heckbert | |
# 1990 ("What is the coordinate of a pixel?"): d = floor(c) and c = d + 0.5, | |
# where d is a discrete coordinate and c is a continuous coordinate. | |
for ann in dataset_dict["annotations"]: | |
point_coords_wrt_image = np.array(ann["point_coords"]).astype(float) | |
point_coords_wrt_image = point_coords_wrt_image + 0.5 | |
ann["point_coords"] = point_coords_wrt_image | |
annos = [ | |
# also need to transform point coordinates | |
transform_instance_annotations( | |
obj, | |
transforms, | |
image_shape, | |
) | |
for obj in dataset_dict.pop("annotations") | |
if obj.get("iscrowd", 0) == 0 | |
] | |
instances = annotations_to_instances( | |
annos, | |
image_shape, | |
sample_points=self.sample_points, | |
) | |
dataset_dict["instances"] = utils.filter_empty_instances(instances) | |
return dataset_dict | |