Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
""" | |
Point supervision Training Script. | |
This script is a simplified version of the training script in detectron2/tools. | |
""" | |
import os | |
import detectron2.utils.comm as comm | |
from detectron2.checkpoint import DetectionCheckpointer | |
from detectron2.config import get_cfg | |
from detectron2.data import build_detection_train_loader, MetadataCatalog | |
from detectron2.engine import ( | |
default_argument_parser, | |
default_setup, | |
DefaultTrainer, | |
launch, | |
) | |
from detectron2.evaluation import COCOEvaluator, DatasetEvaluators, verify_results | |
from detectron2.projects.point_rend import add_pointrend_config | |
from detectron2.utils.logger import setup_logger | |
from point_sup import add_point_sup_config, PointSupDatasetMapper | |
class Trainer(DefaultTrainer): | |
""" | |
We use the "DefaultTrainer" which contains pre-defined default logic for | |
standard training workflow. They may not work for you, especially if you | |
are working on a new research project. In that case you can write your | |
own training loop. You can use "tools/plain_train_net.py" as an example. | |
""" | |
def build_evaluator(cls, cfg, dataset_name, output_folder=None): | |
""" | |
Create evaluator(s) for a given dataset. | |
This uses the special metadata "evaluator_type" associated with each builtin dataset. | |
For your own dataset, you can simply create an evaluator manually in your | |
script and do not have to worry about the hacky if-else logic here. | |
""" | |
if output_folder is None: | |
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") | |
evaluator_list = [] | |
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type | |
if evaluator_type == "coco": | |
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) | |
if len(evaluator_list) == 0: | |
raise NotImplementedError( | |
"no Evaluator for the dataset {} with the type {}".format( | |
dataset_name, evaluator_type | |
) | |
) | |
elif len(evaluator_list) == 1: | |
return evaluator_list[0] | |
return DatasetEvaluators(evaluator_list) | |
def build_train_loader(cls, cfg): | |
if cfg.INPUT.POINT_SUP: | |
mapper = PointSupDatasetMapper(cfg, is_train=True) | |
else: | |
mapper = None | |
return build_detection_train_loader(cfg, mapper=mapper) | |
def setup(args): | |
""" | |
Create configs and perform basic setups. | |
""" | |
cfg = get_cfg() | |
add_pointrend_config(cfg) | |
add_point_sup_config(cfg) | |
cfg.merge_from_file(args.config_file) | |
cfg.merge_from_list(args.opts) | |
cfg.freeze() | |
default_setup(cfg, args) | |
# Setup logger for "point_sup" module | |
setup_logger( | |
output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="point_sup" | |
) | |
return cfg | |
def main(args): | |
cfg = setup(args) | |
if args.eval_only: | |
model = Trainer.build_model(cfg) | |
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( | |
cfg.MODEL.WEIGHTS, resume=args.resume | |
) | |
res = Trainer.test(cfg, model) | |
if cfg.TEST.AUG.ENABLED: | |
res.update(Trainer.test_with_TTA(cfg, model)) | |
if comm.is_main_process(): | |
verify_results(cfg, res) | |
return res | |
""" | |
If you'd like to do anything fancier than the standard training logic, | |
consider writing your own training loop (see plain_train_net.py) or | |
subclassing the trainer. | |
""" | |
trainer = Trainer(cfg) | |
trainer.resume_or_load(resume=args.resume) | |
return trainer.train() | |
def invoke_main() -> None: | |
args = default_argument_parser().parse_args() | |
print("Command Line Args:", args) | |
launch( | |
main, | |
args.num_gpus, | |
num_machines=args.num_machines, | |
machine_rank=args.machine_rank, | |
dist_url=args.dist_url, | |
args=(args,), | |
) | |
if __name__ == "__main__": | |
invoke_main() # pragma: no cover | |