rlawjdghek's picture
prep (#1)
61c2d32 verified
raw
history blame
3.05 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
import torch
from detectron2.layers import ciou_loss, diou_loss
class TestLosses(unittest.TestCase):
def test_diou_loss(self):
"""
loss = 1 - iou + d/c
where,
d = (distance between centers of the 2 boxes)^2
c = (diagonal length of the smallest enclosing box covering the 2 boxes)^2
"""
# Identical boxes should have loss of 0
box = torch.tensor([-1, -1, 1, 1], dtype=torch.float32)
loss = diou_loss(box, box)
self.assertTrue(np.allclose(loss, [0.0]))
# Half size box inside other box
# iou = 0.5, d = 0.25, c = 8
box2 = torch.tensor([0, -1, 1, 1], dtype=torch.float32)
loss = diou_loss(box, box2)
self.assertTrue(np.allclose(loss, [0.53125]))
# Two diagonally adjacent boxes
# iou = 0, d = 2, c = 8
box3 = torch.tensor([0, 0, 1, 1], dtype=torch.float32)
box4 = torch.tensor([1, 1, 2, 2], dtype=torch.float32)
loss = diou_loss(box3, box4)
self.assertTrue(np.allclose(loss, [1.25]))
# Test batched loss and reductions
box1s = torch.stack([box, box3], dim=0)
box2s = torch.stack([box2, box4], dim=0)
loss = diou_loss(box1s, box2s, reduction="sum")
self.assertTrue(np.allclose(loss, [1.78125]))
loss = diou_loss(box1s, box2s, reduction="mean")
self.assertTrue(np.allclose(loss, [0.890625]))
def test_ciou_loss(self):
"""
loss = 1 - iou + d/c + alpha*v
where,
d = (distance between centers of the 2 boxes)^2
c = (diagonal length of the smallest enclosing box covering the 2 boxes)^2
v = (4/pi^2) * (arctan(box1_w/box1_h) - arctan(box2_w/box2_h))^2
alpha = v/(1 - iou + v)
"""
# Identical boxes should have loss of 0
box = torch.tensor([-1, -1, 1, 1], dtype=torch.float32)
loss = ciou_loss(box, box)
self.assertTrue(np.allclose(loss, [0.0]))
# Half size box inside other box
# iou = 0.5, d = 0.25, c = 8
# v = (4/pi^2) * (arctan(1) - arctan(0.5))^2 = 0.042
# alpha = 0.0775
box2 = torch.tensor([0, -1, 1, 1], dtype=torch.float32)
loss = ciou_loss(box, box2)
self.assertTrue(np.allclose(loss, [0.5345]))
# Two diagonally adjacent boxes
# iou = 0, d = 2, c = 8, v = 0, alpha = 0
box3 = torch.tensor([0, 0, 1, 1], dtype=torch.float32)
box4 = torch.tensor([1, 1, 2, 2], dtype=torch.float32)
loss = ciou_loss(box3, box4)
self.assertTrue(np.allclose(loss, [1.25]))
# Test batched loss and reductions
box1s = torch.stack([box, box3], dim=0)
box2s = torch.stack([box2, box4], dim=0)
loss = ciou_loss(box1s, box2s, reduction="sum")
self.assertTrue(np.allclose(loss, [1.7845]))
loss = ciou_loss(box1s, box2s, reduction="mean")
self.assertTrue(np.allclose(loss, [0.89225]))