Spaces:
Running
on
Zero
Running
on
Zero
StableVITON
/
preprocess
/detectron2
/projects
/Panoptic-DeepLab
/panoptic_deeplab
/post_processing.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Reference: https://github.com/bowenc0221/panoptic-deeplab/blob/master/segmentation/model/post_processing/instance_post_processing.py # noqa | |
from collections import Counter | |
import torch | |
import torch.nn.functional as F | |
def find_instance_center(center_heatmap, threshold=0.1, nms_kernel=3, top_k=None): | |
""" | |
Find the center points from the center heatmap. | |
Args: | |
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output. | |
threshold: A float, threshold applied to center heatmap score. | |
nms_kernel: An integer, NMS max pooling kernel size. | |
top_k: An integer, top k centers to keep. | |
Returns: | |
A Tensor of shape [K, 2] where K is the number of center points. The | |
order of second dim is (y, x). | |
""" | |
# Thresholding, setting values below threshold to -1. | |
center_heatmap = F.threshold(center_heatmap, threshold, -1) | |
# NMS | |
nms_padding = (nms_kernel - 1) // 2 | |
center_heatmap_max_pooled = F.max_pool2d( | |
center_heatmap, kernel_size=nms_kernel, stride=1, padding=nms_padding | |
) | |
center_heatmap[center_heatmap != center_heatmap_max_pooled] = -1 | |
# Squeeze first two dimensions. | |
center_heatmap = center_heatmap.squeeze() | |
assert len(center_heatmap.size()) == 2, "Something is wrong with center heatmap dimension." | |
# Find non-zero elements. | |
if top_k is None: | |
return torch.nonzero(center_heatmap > 0) | |
else: | |
# find top k centers. | |
top_k_scores, _ = torch.topk(torch.flatten(center_heatmap), top_k) | |
return torch.nonzero(center_heatmap > top_k_scores[-1].clamp_(min=0)) | |
def group_pixels(center_points, offsets): | |
""" | |
Gives each pixel in the image an instance id. | |
Args: | |
center_points: A Tensor of shape [K, 2] where K is the number of center points. | |
The order of second dim is (y, x). | |
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of | |
second dim is (offset_y, offset_x). | |
Returns: | |
A Tensor of shape [1, H, W] with values in range [1, K], which represents | |
the center this pixel belongs to. | |
""" | |
height, width = offsets.size()[1:] | |
# Generates a coordinate map, where each location is the coordinate of | |
# that location. | |
y_coord, x_coord = torch.meshgrid( | |
torch.arange(height, dtype=offsets.dtype, device=offsets.device), | |
torch.arange(width, dtype=offsets.dtype, device=offsets.device), | |
) | |
coord = torch.cat((y_coord.unsqueeze(0), x_coord.unsqueeze(0)), dim=0) | |
center_loc = coord + offsets | |
center_loc = center_loc.flatten(1).T.unsqueeze_(0) # [1, H*W, 2] | |
center_points = center_points.unsqueeze(1) # [K, 1, 2] | |
# Distance: [K, H*W]. | |
distance = torch.norm(center_points - center_loc, dim=-1) | |
# Finds center with minimum distance at each location, offset by 1, to | |
# reserve id=0 for stuff. | |
instance_id = torch.argmin(distance, dim=0).reshape((1, height, width)) + 1 | |
return instance_id | |
def get_instance_segmentation( | |
sem_seg, center_heatmap, offsets, thing_seg, thing_ids, threshold=0.1, nms_kernel=3, top_k=None | |
): | |
""" | |
Post-processing for instance segmentation, gets class agnostic instance id. | |
Args: | |
sem_seg: A Tensor of shape [1, H, W], predicted semantic label. | |
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output. | |
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of | |
second dim is (offset_y, offset_x). | |
thing_seg: A Tensor of shape [1, H, W], predicted foreground mask, | |
if not provided, inference from semantic prediction. | |
thing_ids: A set of ids from contiguous category ids belonging | |
to thing categories. | |
threshold: A float, threshold applied to center heatmap score. | |
nms_kernel: An integer, NMS max pooling kernel size. | |
top_k: An integer, top k centers to keep. | |
Returns: | |
A Tensor of shape [1, H, W] with value 0 represent stuff (not instance) | |
and other positive values represent different instances. | |
A Tensor of shape [1, K, 2] where K is the number of center points. | |
The order of second dim is (y, x). | |
""" | |
center_points = find_instance_center( | |
center_heatmap, threshold=threshold, nms_kernel=nms_kernel, top_k=top_k | |
) | |
if center_points.size(0) == 0: | |
return torch.zeros_like(sem_seg), center_points.unsqueeze(0) | |
ins_seg = group_pixels(center_points, offsets) | |
return thing_seg * ins_seg, center_points.unsqueeze(0) | |
def merge_semantic_and_instance( | |
sem_seg, ins_seg, semantic_thing_seg, label_divisor, thing_ids, stuff_area, void_label | |
): | |
""" | |
Post-processing for panoptic segmentation, by merging semantic segmentation | |
label and class agnostic instance segmentation label. | |
Args: | |
sem_seg: A Tensor of shape [1, H, W], predicted category id for each pixel. | |
ins_seg: A Tensor of shape [1, H, W], predicted instance id for each pixel. | |
semantic_thing_seg: A Tensor of shape [1, H, W], predicted foreground mask. | |
label_divisor: An integer, used to convert panoptic id = | |
semantic id * label_divisor + instance_id. | |
thing_ids: Set, a set of ids from contiguous category ids belonging | |
to thing categories. | |
stuff_area: An integer, remove stuff whose area is less tan stuff_area. | |
void_label: An integer, indicates the region has no confident prediction. | |
Returns: | |
A Tensor of shape [1, H, W]. | |
""" | |
# In case thing mask does not align with semantic prediction. | |
pan_seg = torch.zeros_like(sem_seg) + void_label | |
is_thing = (ins_seg > 0) & (semantic_thing_seg > 0) | |
# Keep track of instance id for each class. | |
class_id_tracker = Counter() | |
# Paste thing by majority voting. | |
instance_ids = torch.unique(ins_seg) | |
for ins_id in instance_ids: | |
if ins_id == 0: | |
continue | |
# Make sure only do majority voting within `semantic_thing_seg`. | |
thing_mask = (ins_seg == ins_id) & is_thing | |
if torch.nonzero(thing_mask).size(0) == 0: | |
continue | |
class_id, _ = torch.mode(sem_seg[thing_mask].view(-1)) | |
class_id_tracker[class_id.item()] += 1 | |
new_ins_id = class_id_tracker[class_id.item()] | |
pan_seg[thing_mask] = class_id * label_divisor + new_ins_id | |
# Paste stuff to unoccupied area. | |
class_ids = torch.unique(sem_seg) | |
for class_id in class_ids: | |
if class_id.item() in thing_ids: | |
# thing class | |
continue | |
# Calculate stuff area. | |
stuff_mask = (sem_seg == class_id) & (ins_seg == 0) | |
if stuff_mask.sum().item() >= stuff_area: | |
pan_seg[stuff_mask] = class_id * label_divisor | |
return pan_seg | |
def get_panoptic_segmentation( | |
sem_seg, | |
center_heatmap, | |
offsets, | |
thing_ids, | |
label_divisor, | |
stuff_area, | |
void_label, | |
threshold=0.1, | |
nms_kernel=7, | |
top_k=200, | |
foreground_mask=None, | |
): | |
""" | |
Post-processing for panoptic segmentation. | |
Args: | |
sem_seg: A Tensor of shape [1, H, W] of predicted semantic label. | |
center_heatmap: A Tensor of shape [1, H, W] of raw center heatmap output. | |
offsets: A Tensor of shape [2, H, W] of raw offset output. The order of | |
second dim is (offset_y, offset_x). | |
thing_ids: A set of ids from contiguous category ids belonging | |
to thing categories. | |
label_divisor: An integer, used to convert panoptic id = | |
semantic id * label_divisor + instance_id. | |
stuff_area: An integer, remove stuff whose area is less tan stuff_area. | |
void_label: An integer, indicates the region has no confident prediction. | |
threshold: A float, threshold applied to center heatmap score. | |
nms_kernel: An integer, NMS max pooling kernel size. | |
top_k: An integer, top k centers to keep. | |
foreground_mask: Optional, A Tensor of shape [1, H, W] of predicted | |
binary foreground mask. If not provided, it will be generated from | |
sem_seg. | |
Returns: | |
A Tensor of shape [1, H, W], int64. | |
""" | |
if sem_seg.dim() != 3 and sem_seg.size(0) != 1: | |
raise ValueError("Semantic prediction with un-supported shape: {}.".format(sem_seg.size())) | |
if center_heatmap.dim() != 3: | |
raise ValueError( | |
"Center prediction with un-supported dimension: {}.".format(center_heatmap.dim()) | |
) | |
if offsets.dim() != 3: | |
raise ValueError("Offset prediction with un-supported dimension: {}.".format(offsets.dim())) | |
if foreground_mask is not None: | |
if foreground_mask.dim() != 3 and foreground_mask.size(0) != 1: | |
raise ValueError( | |
"Foreground prediction with un-supported shape: {}.".format(sem_seg.size()) | |
) | |
thing_seg = foreground_mask | |
else: | |
# inference from semantic segmentation | |
thing_seg = torch.zeros_like(sem_seg) | |
for thing_class in list(thing_ids): | |
thing_seg[sem_seg == thing_class] = 1 | |
instance, center = get_instance_segmentation( | |
sem_seg, | |
center_heatmap, | |
offsets, | |
thing_seg, | |
thing_ids, | |
threshold=threshold, | |
nms_kernel=nms_kernel, | |
top_k=top_k, | |
) | |
panoptic = merge_semantic_and_instance( | |
sem_seg, instance, thing_seg, label_divisor, thing_ids, stuff_area, void_label | |
) | |
return panoptic, center | |