Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import fvcore.nn.weight_init as weight_init | |
import torch | |
import torch.nn.functional as F | |
from detectron2.layers import Conv2d, FrozenBatchNorm2d, get_norm | |
from detectron2.modeling import BACKBONE_REGISTRY, ResNet, ResNetBlockBase | |
from detectron2.modeling.backbone.resnet import BasicStem, BottleneckBlock, DeformBottleneckBlock | |
from .trident_conv import TridentConv | |
__all__ = ["TridentBottleneckBlock", "make_trident_stage", "build_trident_resnet_backbone"] | |
class TridentBottleneckBlock(ResNetBlockBase): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
*, | |
bottleneck_channels, | |
stride=1, | |
num_groups=1, | |
norm="BN", | |
stride_in_1x1=False, | |
num_branch=3, | |
dilations=(1, 2, 3), | |
concat_output=False, | |
test_branch_idx=-1, | |
): | |
""" | |
Args: | |
num_branch (int): the number of branches in TridentNet. | |
dilations (tuple): the dilations of multiple branches in TridentNet. | |
concat_output (bool): if concatenate outputs of multiple branches in TridentNet. | |
Use 'True' for the last trident block. | |
""" | |
super().__init__(in_channels, out_channels, stride) | |
assert num_branch == len(dilations) | |
self.num_branch = num_branch | |
self.concat_output = concat_output | |
self.test_branch_idx = test_branch_idx | |
if in_channels != out_channels: | |
self.shortcut = Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
norm=get_norm(norm, out_channels), | |
) | |
else: | |
self.shortcut = None | |
stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) | |
self.conv1 = Conv2d( | |
in_channels, | |
bottleneck_channels, | |
kernel_size=1, | |
stride=stride_1x1, | |
bias=False, | |
norm=get_norm(norm, bottleneck_channels), | |
) | |
self.conv2 = TridentConv( | |
bottleneck_channels, | |
bottleneck_channels, | |
kernel_size=3, | |
stride=stride_3x3, | |
paddings=dilations, | |
bias=False, | |
groups=num_groups, | |
dilations=dilations, | |
num_branch=num_branch, | |
test_branch_idx=test_branch_idx, | |
norm=get_norm(norm, bottleneck_channels), | |
) | |
self.conv3 = Conv2d( | |
bottleneck_channels, | |
out_channels, | |
kernel_size=1, | |
bias=False, | |
norm=get_norm(norm, out_channels), | |
) | |
for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]: | |
if layer is not None: # shortcut can be None | |
weight_init.c2_msra_fill(layer) | |
def forward(self, x): | |
num_branch = self.num_branch if self.training or self.test_branch_idx == -1 else 1 | |
if not isinstance(x, list): | |
x = [x] * num_branch | |
out = [self.conv1(b) for b in x] | |
out = [F.relu_(b) for b in out] | |
out = self.conv2(out) | |
out = [F.relu_(b) for b in out] | |
out = [self.conv3(b) for b in out] | |
if self.shortcut is not None: | |
shortcut = [self.shortcut(b) for b in x] | |
else: | |
shortcut = x | |
out = [out_b + shortcut_b for out_b, shortcut_b in zip(out, shortcut)] | |
out = [F.relu_(b) for b in out] | |
if self.concat_output: | |
out = torch.cat(out) | |
return out | |
def make_trident_stage(block_class, num_blocks, **kwargs): | |
""" | |
Create a resnet stage by creating many blocks for TridentNet. | |
""" | |
concat_output = [False] * (num_blocks - 1) + [True] | |
kwargs["concat_output_per_block"] = concat_output | |
return ResNet.make_stage(block_class, num_blocks, **kwargs) | |
def build_trident_resnet_backbone(cfg, input_shape): | |
""" | |
Create a ResNet instance from config for TridentNet. | |
Returns: | |
ResNet: a :class:`ResNet` instance. | |
""" | |
# need registration of new blocks/stems? | |
norm = cfg.MODEL.RESNETS.NORM | |
stem = BasicStem( | |
in_channels=input_shape.channels, | |
out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS, | |
norm=norm, | |
) | |
freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT | |
if freeze_at >= 1: | |
for p in stem.parameters(): | |
p.requires_grad = False | |
stem = FrozenBatchNorm2d.convert_frozen_batchnorm(stem) | |
# fmt: off | |
out_features = cfg.MODEL.RESNETS.OUT_FEATURES | |
depth = cfg.MODEL.RESNETS.DEPTH | |
num_groups = cfg.MODEL.RESNETS.NUM_GROUPS | |
width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP | |
bottleneck_channels = num_groups * width_per_group | |
in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS | |
out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS | |
stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1 | |
res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION | |
deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE | |
deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED | |
deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS | |
num_branch = cfg.MODEL.TRIDENT.NUM_BRANCH | |
branch_dilations = cfg.MODEL.TRIDENT.BRANCH_DILATIONS | |
trident_stage = cfg.MODEL.TRIDENT.TRIDENT_STAGE | |
test_branch_idx = cfg.MODEL.TRIDENT.TEST_BRANCH_IDX | |
# fmt: on | |
assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation) | |
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth] | |
stages = [] | |
res_stage_idx = {"res2": 2, "res3": 3, "res4": 4, "res5": 5} | |
out_stage_idx = [res_stage_idx[f] for f in out_features] | |
trident_stage_idx = res_stage_idx[trident_stage] | |
max_stage_idx = max(out_stage_idx) | |
for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)): | |
dilation = res5_dilation if stage_idx == 5 else 1 | |
first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 | |
stage_kargs = { | |
"num_blocks": num_blocks_per_stage[idx], | |
"stride_per_block": [first_stride] + [1] * (num_blocks_per_stage[idx] - 1), | |
"in_channels": in_channels, | |
"bottleneck_channels": bottleneck_channels, | |
"out_channels": out_channels, | |
"num_groups": num_groups, | |
"norm": norm, | |
"stride_in_1x1": stride_in_1x1, | |
"dilation": dilation, | |
} | |
if stage_idx == trident_stage_idx: | |
assert not deform_on_per_stage[ | |
idx | |
], "Not support deformable conv in Trident blocks yet." | |
stage_kargs["block_class"] = TridentBottleneckBlock | |
stage_kargs["num_branch"] = num_branch | |
stage_kargs["dilations"] = branch_dilations | |
stage_kargs["test_branch_idx"] = test_branch_idx | |
stage_kargs.pop("dilation") | |
elif deform_on_per_stage[idx]: | |
stage_kargs["block_class"] = DeformBottleneckBlock | |
stage_kargs["deform_modulated"] = deform_modulated | |
stage_kargs["deform_num_groups"] = deform_num_groups | |
else: | |
stage_kargs["block_class"] = BottleneckBlock | |
blocks = ( | |
make_trident_stage(**stage_kargs) | |
if stage_idx == trident_stage_idx | |
else ResNet.make_stage(**stage_kargs) | |
) | |
in_channels = out_channels | |
out_channels *= 2 | |
bottleneck_channels *= 2 | |
if freeze_at >= stage_idx: | |
for block in blocks: | |
block.freeze() | |
stages.append(blocks) | |
return ResNet(stem, stages, out_features=out_features) | |