Spaces:
Running
on
Zero
Running
on
Zero
StableVITON
/
preprocess
/detectron2
/projects
/Panoptic-DeepLab
/panoptic_deeplab
/target_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. | |
# Reference: https://github.com/bowenc0221/panoptic-deeplab/blob/aa934324b55a34ce95fea143aea1cb7a6dbe04bd/segmentation/data/transforms/target_transforms.py#L11 # noqa | |
import numpy as np | |
import torch | |
class PanopticDeepLabTargetGenerator: | |
""" | |
Generates training targets for Panoptic-DeepLab. | |
""" | |
def __init__( | |
self, | |
ignore_label, | |
thing_ids, | |
sigma=8, | |
ignore_stuff_in_offset=False, | |
small_instance_area=0, | |
small_instance_weight=1, | |
ignore_crowd_in_semantic=False, | |
): | |
""" | |
Args: | |
ignore_label: Integer, the ignore label for semantic segmentation. | |
thing_ids: Set, a set of ids from contiguous category ids belonging | |
to thing categories. | |
sigma: the sigma for Gaussian kernel. | |
ignore_stuff_in_offset: Boolean, whether to ignore stuff region when | |
training the offset branch. | |
small_instance_area: Integer, indicates largest area for small instances. | |
small_instance_weight: Integer, indicates semantic loss weights for | |
small instances. | |
ignore_crowd_in_semantic: Boolean, whether to ignore crowd region in | |
semantic segmentation branch, crowd region is ignored in the original | |
TensorFlow implementation. | |
""" | |
self.ignore_label = ignore_label | |
self.thing_ids = set(thing_ids) | |
self.ignore_stuff_in_offset = ignore_stuff_in_offset | |
self.small_instance_area = small_instance_area | |
self.small_instance_weight = small_instance_weight | |
self.ignore_crowd_in_semantic = ignore_crowd_in_semantic | |
# Generate the default Gaussian image for each center | |
self.sigma = sigma | |
size = 6 * sigma + 3 | |
x = np.arange(0, size, 1, float) | |
y = x[:, np.newaxis] | |
x0, y0 = 3 * sigma + 1, 3 * sigma + 1 | |
self.g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma**2)) | |
def __call__(self, panoptic, segments_info): | |
"""Generates the training target. | |
reference: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/preparation/createPanopticImgs.py # noqa | |
reference: https://github.com/facebookresearch/detectron2/blob/main/datasets/prepare_panoptic_fpn.py#L18 # noqa | |
Args: | |
panoptic: numpy.array, panoptic label, we assume it is already | |
converted from rgb image by panopticapi.utils.rgb2id. | |
segments_info (list[dict]): see detectron2 documentation of "Use Custom Datasets". | |
Returns: | |
A dictionary with fields: | |
- sem_seg: Tensor, semantic label, shape=(H, W). | |
- center: Tensor, center heatmap, shape=(H, W). | |
- center_points: List, center coordinates, with tuple | |
(y-coord, x-coord). | |
- offset: Tensor, offset, shape=(2, H, W), first dim is | |
(offset_y, offset_x). | |
- sem_seg_weights: Tensor, loss weight for semantic prediction, | |
shape=(H, W). | |
- center_weights: Tensor, ignore region of center prediction, | |
shape=(H, W), used as weights for center regression 0 is | |
ignore, 1 is has instance. Multiply this mask to loss. | |
- offset_weights: Tensor, ignore region of offset prediction, | |
shape=(H, W), used as weights for offset regression 0 is | |
ignore, 1 is has instance. Multiply this mask to loss. | |
""" | |
height, width = panoptic.shape[0], panoptic.shape[1] | |
semantic = np.zeros_like(panoptic, dtype=np.uint8) + self.ignore_label | |
center = np.zeros((height, width), dtype=np.float32) | |
center_pts = [] | |
offset = np.zeros((2, height, width), dtype=np.float32) | |
y_coord, x_coord = np.meshgrid( | |
np.arange(height, dtype=np.float32), np.arange(width, dtype=np.float32), indexing="ij" | |
) | |
# Generate pixel-wise loss weights | |
semantic_weights = np.ones_like(panoptic, dtype=np.uint8) | |
# 0: ignore, 1: has instance | |
# three conditions for a region to be ignored for instance branches: | |
# (1) It is labeled as `ignore_label` | |
# (2) It is crowd region (iscrowd=1) | |
# (3) (Optional) It is stuff region (for offset branch) | |
center_weights = np.zeros_like(panoptic, dtype=np.uint8) | |
offset_weights = np.zeros_like(panoptic, dtype=np.uint8) | |
for seg in segments_info: | |
cat_id = seg["category_id"] | |
if not (self.ignore_crowd_in_semantic and seg["iscrowd"]): | |
semantic[panoptic == seg["id"]] = cat_id | |
if not seg["iscrowd"]: | |
# Ignored regions are not in `segments_info`. | |
# Handle crowd region. | |
center_weights[panoptic == seg["id"]] = 1 | |
if not self.ignore_stuff_in_offset or cat_id in self.thing_ids: | |
offset_weights[panoptic == seg["id"]] = 1 | |
if cat_id in self.thing_ids: | |
# find instance center | |
mask_index = np.where(panoptic == seg["id"]) | |
if len(mask_index[0]) == 0: | |
# the instance is completely cropped | |
continue | |
# Find instance area | |
ins_area = len(mask_index[0]) | |
if ins_area < self.small_instance_area: | |
semantic_weights[panoptic == seg["id"]] = self.small_instance_weight | |
center_y, center_x = np.mean(mask_index[0]), np.mean(mask_index[1]) | |
center_pts.append([center_y, center_x]) | |
# generate center heatmap | |
y, x = int(round(center_y)), int(round(center_x)) | |
sigma = self.sigma | |
# upper left | |
ul = int(np.round(x - 3 * sigma - 1)), int(np.round(y - 3 * sigma - 1)) | |
# bottom right | |
br = int(np.round(x + 3 * sigma + 2)), int(np.round(y + 3 * sigma + 2)) | |
# start and end indices in default Gaussian image | |
gaussian_x0, gaussian_x1 = max(0, -ul[0]), min(br[0], width) - ul[0] | |
gaussian_y0, gaussian_y1 = max(0, -ul[1]), min(br[1], height) - ul[1] | |
# start and end indices in center heatmap image | |
center_x0, center_x1 = max(0, ul[0]), min(br[0], width) | |
center_y0, center_y1 = max(0, ul[1]), min(br[1], height) | |
center[center_y0:center_y1, center_x0:center_x1] = np.maximum( | |
center[center_y0:center_y1, center_x0:center_x1], | |
self.g[gaussian_y0:gaussian_y1, gaussian_x0:gaussian_x1], | |
) | |
# generate offset (2, h, w) -> (y-dir, x-dir) | |
offset[0][mask_index] = center_y - y_coord[mask_index] | |
offset[1][mask_index] = center_x - x_coord[mask_index] | |
center_weights = center_weights[None] | |
offset_weights = offset_weights[None] | |
return dict( | |
sem_seg=torch.as_tensor(semantic.astype("long")), | |
center=torch.as_tensor(center.astype(np.float32)), | |
center_points=center_pts, | |
offset=torch.as_tensor(offset.astype(np.float32)), | |
sem_seg_weights=torch.as_tensor(semantic_weights.astype(np.float32)), | |
center_weights=torch.as_tensor(center_weights.astype(np.float32)), | |
offset_weights=torch.as_tensor(offset_weights.astype(np.float32)), | |
) | |