mpark's picture
det2
7aefd5a
raw
history blame
15.3 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import io
import logging
import os
from collections import defaultdict
from dataclasses import dataclass
from typing import Any, Dict, Iterable, List, Optional
from fvcore.common.timer import Timer
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from ..utils import maybe_prepend_base_path
DENSEPOSE_MASK_KEY = "dp_masks"
DENSEPOSE_IUV_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_I", "dp_U", "dp_V"]
DENSEPOSE_CSE_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_vertex", "ref_model"]
DENSEPOSE_ALL_POSSIBLE_KEYS = set(
DENSEPOSE_IUV_KEYS_WITHOUT_MASK + DENSEPOSE_CSE_KEYS_WITHOUT_MASK + [DENSEPOSE_MASK_KEY]
)
DENSEPOSE_METADATA_URL_PREFIX = "https://dl.fbaipublicfiles.com/densepose/data/"
@dataclass
class CocoDatasetInfo:
name: str
images_root: str
annotations_fpath: str
DATASETS = [
CocoDatasetInfo(
name="densepose_coco_2014_train",
images_root="coco/train2014",
annotations_fpath="coco/annotations/densepose_train2014.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival",
images_root="coco/val2014",
annotations_fpath="coco/annotations/densepose_minival2014.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival_100",
images_root="coco/val2014",
annotations_fpath="coco/annotations/densepose_minival2014_100.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_valminusminival",
images_root="coco/val2014",
annotations_fpath="coco/annotations/densepose_valminusminival2014.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_train_cse",
images_root="coco/train2014",
annotations_fpath="coco_cse/densepose_train2014_cse.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival_cse",
images_root="coco/val2014",
annotations_fpath="coco_cse/densepose_minival2014_cse.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_minival_100_cse",
images_root="coco/val2014",
annotations_fpath="coco_cse/densepose_minival2014_100_cse.json",
),
CocoDatasetInfo(
name="densepose_coco_2014_valminusminival_cse",
images_root="coco/val2014",
annotations_fpath="coco_cse/densepose_valminusminival2014_cse.json",
),
CocoDatasetInfo(
name="densepose_chimps",
images_root="densepose_chimps/images",
annotations_fpath="densepose_chimps/densepose_chimps_densepose.json",
),
CocoDatasetInfo(
name="densepose_chimps_cse_train",
images_root="densepose_chimps/images",
annotations_fpath="densepose_chimps/densepose_chimps_cse_train.json",
),
CocoDatasetInfo(
name="densepose_chimps_cse_val",
images_root="densepose_chimps/images",
annotations_fpath="densepose_chimps/densepose_chimps_cse_val.json",
),
CocoDatasetInfo(
name="posetrack2017_train",
images_root="posetrack2017/posetrack_data_2017",
annotations_fpath="posetrack2017/densepose_posetrack_train2017.json",
),
CocoDatasetInfo(
name="posetrack2017_val",
images_root="posetrack2017/posetrack_data_2017",
annotations_fpath="posetrack2017/densepose_posetrack_val2017.json",
),
CocoDatasetInfo(
name="lvis_v05_train",
images_root="coco/train2017",
annotations_fpath="lvis/lvis_v0.5_plus_dp_train.json",
),
CocoDatasetInfo(
name="lvis_v05_val",
images_root="coco/val2017",
annotations_fpath="lvis/lvis_v0.5_plus_dp_val.json",
),
]
BASE_DATASETS = [
CocoDatasetInfo(
name="base_coco_2017_train",
images_root="coco/train2017",
annotations_fpath="coco/annotations/instances_train2017.json",
),
CocoDatasetInfo(
name="base_coco_2017_val",
images_root="coco/val2017",
annotations_fpath="coco/annotations/instances_val2017.json",
),
CocoDatasetInfo(
name="base_coco_2017_val_100",
images_root="coco/val2017",
annotations_fpath="coco/annotations/instances_val2017_100.json",
),
]
def get_metadata(base_path: Optional[str]) -> Dict[str, Any]:
"""
Returns metadata associated with COCO DensePose datasets
Args:
base_path: Optional[str]
Base path used to load metadata from
Returns:
Dict[str, Any]
Metadata in the form of a dictionary
"""
meta = {
"densepose_transform_src": maybe_prepend_base_path(base_path, "UV_symmetry_transforms.mat"),
"densepose_smpl_subdiv": maybe_prepend_base_path(base_path, "SMPL_subdiv.mat"),
"densepose_smpl_subdiv_transform": maybe_prepend_base_path(
base_path,
"SMPL_SUBDIV_TRANSFORM.mat",
),
}
return meta
def _load_coco_annotations(json_file: str):
"""
Load COCO annotations from a JSON file
Args:
json_file: str
Path to the file to load annotations from
Returns:
Instance of `pycocotools.coco.COCO` that provides access to annotations
data
"""
from pycocotools.coco import COCO
logger = logging.getLogger(__name__)
timer = Timer()
with contextlib.redirect_stdout(io.StringIO()):
coco_api = COCO(json_file)
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
return coco_api
def _add_categories_metadata(dataset_name: str, categories: List[Dict[str, Any]]):
meta = MetadataCatalog.get(dataset_name)
meta.categories = {c["id"]: c["name"] for c in categories}
logger = logging.getLogger(__name__)
logger.info("Dataset {} categories: {}".format(dataset_name, meta.categories))
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]):
if "minival" in json_file:
# Skip validation on COCO2014 valminusminival and minival annotations
# The ratio of buggy annotations there is tiny and does not affect accuracy
# Therefore we explicitly white-list them
return
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
json_file
)
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
if "bbox" not in ann_dict:
return
obj["bbox"] = ann_dict["bbox"]
obj["bbox_mode"] = BoxMode.XYWH_ABS
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
if "segmentation" not in ann_dict:
return
segm = ann_dict["segmentation"]
if not isinstance(segm, dict):
# filter out invalid polygons (< 3 points)
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
if len(segm) == 0:
return
obj["segmentation"] = segm
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
if "keypoints" not in ann_dict:
return
keypts = ann_dict["keypoints"] # list[int]
for idx, v in enumerate(keypts):
if idx % 3 != 2:
# COCO's segmentation coordinates are floating points in [0, H or W],
# but keypoint coordinates are integers in [0, H-1 or W-1]
# Therefore we assume the coordinates are "pixel indices" and
# add 0.5 to convert to floating point coordinates.
keypts[idx] = v + 0.5
obj["keypoints"] = keypts
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
if key in ann_dict:
obj[key] = ann_dict[key]
def _combine_images_with_annotations(
dataset_name: str,
image_root: str,
img_datas: Iterable[Dict[str, Any]],
ann_datas: Iterable[Iterable[Dict[str, Any]]],
):
ann_keys = ["iscrowd", "category_id"]
dataset_dicts = []
contains_video_frame_info = False
for img_dict, ann_dicts in zip(img_datas, ann_datas):
record = {}
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
record["image_id"] = img_dict["id"]
record["dataset"] = dataset_name
if "frame_id" in img_dict:
record["frame_id"] = img_dict["frame_id"]
record["video_id"] = img_dict.get("vid_id", None)
contains_video_frame_info = True
objs = []
for ann_dict in ann_dicts:
assert ann_dict["image_id"] == record["image_id"]
assert ann_dict.get("ignore", 0) == 0
obj = {key: ann_dict[key] for key in ann_keys if key in ann_dict}
_maybe_add_bbox(obj, ann_dict)
_maybe_add_segm(obj, ann_dict)
_maybe_add_keypoints(obj, ann_dict)
_maybe_add_densepose(obj, ann_dict)
objs.append(obj)
record["annotations"] = objs
dataset_dicts.append(record)
if contains_video_frame_info:
create_video_frame_mapping(dataset_name, dataset_dicts)
return dataset_dicts
def get_contiguous_id_to_category_id_map(metadata):
cat_id_2_cont_id = metadata.thing_dataset_id_to_contiguous_id
cont_id_2_cat_id = {}
for cat_id, cont_id in cat_id_2_cont_id.items():
if cont_id in cont_id_2_cat_id:
continue
cont_id_2_cat_id[cont_id] = cat_id
return cont_id_2_cat_id
def maybe_filter_categories_cocoapi(dataset_name, coco_api):
meta = MetadataCatalog.get(dataset_name)
cont_id_2_cat_id = get_contiguous_id_to_category_id_map(meta)
cat_id_2_cont_id = meta.thing_dataset_id_to_contiguous_id
# filter categories
cats = []
for cat in coco_api.dataset["categories"]:
cat_id = cat["id"]
if cat_id not in cat_id_2_cont_id:
continue
cont_id = cat_id_2_cont_id[cat_id]
if (cont_id in cont_id_2_cat_id) and (cont_id_2_cat_id[cont_id] == cat_id):
cats.append(cat)
coco_api.dataset["categories"] = cats
# filter annotations, if multiple categories are mapped to a single
# contiguous ID, use only one category ID and map all annotations to that category ID
anns = []
for ann in coco_api.dataset["annotations"]:
cat_id = ann["category_id"]
if cat_id not in cat_id_2_cont_id:
continue
cont_id = cat_id_2_cont_id[cat_id]
ann["category_id"] = cont_id_2_cat_id[cont_id]
anns.append(ann)
coco_api.dataset["annotations"] = anns
# recreate index
coco_api.createIndex()
def maybe_filter_and_map_categories_cocoapi(dataset_name, coco_api):
meta = MetadataCatalog.get(dataset_name)
category_id_map = meta.thing_dataset_id_to_contiguous_id
# map categories
cats = []
for cat in coco_api.dataset["categories"]:
cat_id = cat["id"]
if cat_id not in category_id_map:
continue
cat["id"] = category_id_map[cat_id]
cats.append(cat)
coco_api.dataset["categories"] = cats
# map annotation categories
anns = []
for ann in coco_api.dataset["annotations"]:
cat_id = ann["category_id"]
if cat_id not in category_id_map:
continue
ann["category_id"] = category_id_map[cat_id]
anns.append(ann)
coco_api.dataset["annotations"] = anns
# recreate index
coco_api.createIndex()
def create_video_frame_mapping(dataset_name, dataset_dicts):
mapping = defaultdict(dict)
for d in dataset_dicts:
video_id = d.get("video_id")
if video_id is None:
continue
mapping[video_id].update({d["frame_id"]: d["file_name"]})
MetadataCatalog.get(dataset_name).set(video_frame_mapping=mapping)
def load_coco_json(annotations_json_file: str, image_root: str, dataset_name: str):
"""
Loads a JSON file with annotations in COCO instances format.
Replaces `detectron2.data.datasets.coco.load_coco_json` to handle metadata
in a more flexible way. Postpones category mapping to a later stage to be
able to combine several datasets with different (but coherent) sets of
categories.
Args:
annotations_json_file: str
Path to the JSON file with annotations in COCO instances format.
image_root: str
directory that contains all the images
dataset_name: str
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
extra_annotation_keys: Optional[List[str]]
If provided, these keys are used to extract additional data from
the annotations.
"""
coco_api = _load_coco_annotations(PathManager.get_local_path(annotations_json_file))
_add_categories_metadata(dataset_name, coco_api.loadCats(coco_api.getCatIds()))
# sort indices for reproducible results
img_ids = sorted(coco_api.imgs.keys())
# imgs is a list of dicts, each looks something like:
# {'license': 4,
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
# 'file_name': 'COCO_val2014_000000001268.jpg',
# 'height': 427,
# 'width': 640,
# 'date_captured': '2013-11-17 05:57:24',
# 'id': 1268}
imgs = coco_api.loadImgs(img_ids)
logger = logging.getLogger(__name__)
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), annotations_json_file))
# anns is a list[list[dict]], where each dict is an annotation
# record for an object. The inner list enumerates the objects in an image
# and the outer list enumerates over images.
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
_verify_annotations_have_unique_ids(annotations_json_file, anns)
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
return dataset_records
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None):
"""
Registers provided COCO DensePose dataset
Args:
dataset_data: CocoDatasetInfo
Dataset data
datasets_root: Optional[str]
Datasets root folder (default: None)
"""
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
def load_annotations():
return load_coco_json(
annotations_json_file=annotations_fpath,
image_root=images_root,
dataset_name=dataset_data.name,
)
DatasetCatalog.register(dataset_data.name, load_annotations)
MetadataCatalog.get(dataset_data.name).set(
json_file=annotations_fpath,
image_root=images_root,
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX)
)
def register_datasets(
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
):
"""
Registers provided COCO DensePose datasets
Args:
datasets_data: Iterable[CocoDatasetInfo]
An iterable of dataset datas
datasets_root: Optional[str]
Datasets root folder (default: None)
"""
for dataset_data in datasets_data:
register_dataset(dataset_data, datasets_root)