mpark's picture
det2
7aefd5a
raw
history blame
9.27 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import os
from typing import Any, Dict, Iterable, List, Optional
from fvcore.common.timer import Timer
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.lvis import get_lvis_instances_meta
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from ..utils import maybe_prepend_base_path
from .coco import (
DENSEPOSE_ALL_POSSIBLE_KEYS,
DENSEPOSE_METADATA_URL_PREFIX,
CocoDatasetInfo,
get_metadata,
)
DATASETS = [
CocoDatasetInfo(
name="densepose_lvis_v1_ds1_train_v1",
images_root="coco_",
annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json",
),
CocoDatasetInfo(
name="densepose_lvis_v1_ds1_val_v1",
images_root="coco_",
annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json",
),
CocoDatasetInfo(
name="densepose_lvis_v1_ds2_train_v1",
images_root="coco_",
annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json",
),
CocoDatasetInfo(
name="densepose_lvis_v1_ds2_val_v1",
images_root="coco_",
annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json",
),
CocoDatasetInfo(
name="densepose_lvis_v1_ds1_val_animals_100",
images_root="coco_",
annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json",
),
]
def _load_lvis_annotations(json_file: str):
"""
Load COCO annotations from a JSON file
Args:
json_file: str
Path to the file to load annotations from
Returns:
Instance of `pycocotools.coco.COCO` that provides access to annotations
data
"""
from lvis import LVIS
json_file = PathManager.get_local_path(json_file)
logger = logging.getLogger(__name__)
timer = Timer()
lvis_api = LVIS(json_file)
if timer.seconds() > 1:
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
return lvis_api
def _add_categories_metadata(dataset_name: str) -> None:
metadict = get_lvis_instances_meta(dataset_name)
categories = metadict["thing_classes"]
metadata = MetadataCatalog.get(dataset_name)
metadata.categories = {i + 1: categories[i] for i in range(len(categories))}
logger = logging.getLogger(__name__)
logger.info(f"Dataset {dataset_name} has {len(categories)} categories")
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None:
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
json_file
)
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
if "bbox" not in ann_dict:
return
obj["bbox"] = ann_dict["bbox"]
obj["bbox_mode"] = BoxMode.XYWH_ABS
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
if "segmentation" not in ann_dict:
return
segm = ann_dict["segmentation"]
if not isinstance(segm, dict):
# filter out invalid polygons (< 3 points)
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
if len(segm) == 0:
return
obj["segmentation"] = segm
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
if "keypoints" not in ann_dict:
return
keypts = ann_dict["keypoints"] # list[int]
for idx, v in enumerate(keypts):
if idx % 3 != 2:
# COCO's segmentation coordinates are floating points in [0, H or W],
# but keypoint coordinates are integers in [0, H-1 or W-1]
# Therefore we assume the coordinates are "pixel indices" and
# add 0.5 to convert to floating point coordinates.
keypts[idx] = v + 0.5
obj["keypoints"] = keypts
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
if key in ann_dict:
obj[key] = ann_dict[key]
def _combine_images_with_annotations(
dataset_name: str,
image_root: str,
img_datas: Iterable[Dict[str, Any]],
ann_datas: Iterable[Iterable[Dict[str, Any]]],
):
dataset_dicts = []
def get_file_name(img_root, img_dict):
# Determine the path including the split folder ("train2017", "val2017", "test2017") from
# the coco_url field. Example:
# 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg'
split_folder, file_name = img_dict["coco_url"].split("/")[-2:]
return os.path.join(img_root + split_folder, file_name)
for img_dict, ann_dicts in zip(img_datas, ann_datas):
record = {}
record["file_name"] = get_file_name(image_root, img_dict)
record["height"] = img_dict["height"]
record["width"] = img_dict["width"]
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
record["image_id"] = img_dict["id"]
record["dataset"] = dataset_name
objs = []
for ann_dict in ann_dicts:
assert ann_dict["image_id"] == record["image_id"]
obj = {}
_maybe_add_bbox(obj, ann_dict)
obj["iscrowd"] = ann_dict.get("iscrowd", 0)
obj["category_id"] = ann_dict["category_id"]
_maybe_add_segm(obj, ann_dict)
_maybe_add_keypoints(obj, ann_dict)
_maybe_add_densepose(obj, ann_dict)
objs.append(obj)
record["annotations"] = objs
dataset_dicts.append(record)
return dataset_dicts
def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str):
"""
Loads a JSON file with annotations in LVIS instances format.
Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata
in a more flexible way. Postpones category mapping to a later stage to be
able to combine several datasets with different (but coherent) sets of
categories.
Args:
annotations_json_file: str
Path to the JSON file with annotations in COCO instances format.
image_root: str
directory that contains all the images
dataset_name: str
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
extra_annotation_keys: Optional[List[str]]
If provided, these keys are used to extract additional data from
the annotations.
"""
lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file))
_add_categories_metadata(dataset_name)
# sort indices for reproducible results
img_ids = sorted(lvis_api.imgs.keys())
# imgs is a list of dicts, each looks something like:
# {'license': 4,
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
# 'file_name': 'COCO_val2014_000000001268.jpg',
# 'height': 427,
# 'width': 640,
# 'date_captured': '2013-11-17 05:57:24',
# 'id': 1268}
imgs = lvis_api.load_imgs(img_ids)
logger = logging.getLogger(__name__)
logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file))
# anns is a list[list[dict]], where each dict is an annotation
# record for an object. The inner list enumerates the objects in an image
# and the outer list enumerates over images.
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
_verify_annotations_have_unique_ids(annotations_json_file, anns)
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
return dataset_records
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None:
"""
Registers provided LVIS DensePose dataset
Args:
dataset_data: CocoDatasetInfo
Dataset data
datasets_root: Optional[str]
Datasets root folder (default: None)
"""
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
def load_annotations():
return load_lvis_json(
annotations_json_file=annotations_fpath,
image_root=images_root,
dataset_name=dataset_data.name,
)
DatasetCatalog.register(dataset_data.name, load_annotations)
MetadataCatalog.get(dataset_data.name).set(
json_file=annotations_fpath,
image_root=images_root,
evaluator_type="lvis",
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX),
)
def register_datasets(
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
) -> None:
"""
Registers provided LVIS DensePose datasets
Args:
datasets_data: Iterable[CocoDatasetInfo]
An iterable of dataset datas
datasets_root: Optional[str]
Datasets root folder (default: None)
"""
for dataset_data in datasets_data:
register_dataset(dataset_data, datasets_root)