# DensePose CSE and DensePose Evolution * [DensePose Evolution pipeline](DENSEPOSE_IUV.md#ModelZooBootstrap), a framework to bootstrap DensePose on unlabeled data * [`InferenceBasedLoader`](../densepose/data/inference_based_loader.py) with data samplers to use inference results from one model to train another model (bootstrap); * [`VideoKeyframeDataset`](../densepose/data/video/video_keyframe_dataset.py) to efficiently load images from video keyframes; * Category maps and filters to combine annotations from different categories and train in a class-agnostic manner; * [Pretrained models](DENSEPOSE_IUV.md#ModelZooBootstrap) for DensePose estimation on chimpanzees; * DensePose head training from partial data (segmentation only); * [DensePose models with mask confidence estimation](DENSEPOSE_IUV.md#ModelZooMaskConfidence); * [DensePose Chimps]() dataset for IUV evaluation * [DensePose Continuous Surface Embeddings](DENSEPOSE_CSE.md), a framework to extend DensePose to various categories using 3D models * [Hard embedding](../densepose/modeling/losses/embed.py) and [soft embedding](../densepose/modeling/losses/soft_embed.py) losses to train universal positional embeddings; * [Embedder](../(densepose/modeling/cse/embedder.py) to handle mesh vertex embeddings; * [Storage](../densepose/evaluation/tensor_storage.py) for evaluation with high volumes of data; * [Pretrained models](DENSEPOSE_CSE.md#ModelZoo) for DensePose CSE estimation on humans and animals; * [DensePose Chimps](DENSEPOSE_DATASETS.md#densepose-chimps) and [DensePose LVIS](DENSEPOSE_DATASETS.md#densepose-lvis) datasets for CSE finetuning and evaluation; * [Vertex and texture mapping visualizers](../densepose/vis/densepose_outputs_vertex.py); * Refactoring of all major components: losses, predictors, model outputs, model results, visualizers; * Dedicated structures for [chart outputs](../densepose/structures/chart.py), [chart outputs with confidences](../densepose/structures/chart_confidence.py), [chart results](../densepose/structures/chart_result.py), [CSE outputs](../densepose/structures/cse.py); * Dedicated predictors for [chart-based estimation](../densepose/modeling/predictors/chart.py), [confidence estimation](../densepose/modeling/predictors/chart_confidence.py) and [CSE estimation](../densepose/modeling/predictors/cse.py); * Generic handling of various [conversions](../densepose/converters) (e.g. from outputs to results); * Better organization of various [losses](../densepose/modeling/losses); * Segregation of loss data accumulators for [IUV setting](../densepose/modeling/losses/utils.py) and [CSE setting](../densepose/modeling/losses/embed_utils.py); * Splitting visualizers into separate modules; * [HRNet](../densepose/modeling/hrnet.py) and [HRFPN](../densepose/modeling/hrfpn.py) backbones; * [PoseTrack](DENSEPOSE_DATASETS.md#densepose-posetrack) dataset; * [IUV texture visualizer](../densepose/vis/densepose_results_textures.py)