import spaces import os import sys import time from glob import glob from os.path import join as opj from pathlib import Path import apply_net import gradio as gr import torch from omegaconf import OmegaConf from PIL import Image print("pip import done") from cldm.model import create_model from cldm.plms_hacked import PLMSSampler from detectron2.data.detection_utils import _apply_exif_orientation, convert_PIL_to_numpy from utils_stableviton import get_batch, get_mask_location, tensor2img PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() sys.path.insert(0, str(PROJECT_ROOT)) from detectron2.projects.DensePose.apply_net_gradio import DensePose4Gradio from preprocess.humanparsing.run_parsing import Parsing from preprocess.openpose.run_openpose import OpenPose print("app import done") os.environ['GRADIO_TEMP_DIR'] = './tmp' # TODO: turn off when final upload IMG_H = 512 IMG_W = 384 openpose_model_hd = OpenPose(0) openpose_model_hd.preprocessor.body_estimation.model.to('cuda') parsing_model_hd = Parsing(0) densepose_model_hd = DensePose4Gradio( cfg='preprocess/detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml', model='https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl', ) category_dict = ['upperbody', 'lowerbody', 'dress'] category_dict_utils = ['upper_body', 'lower_body', 'dresses'] # #### model init >>>> config = OmegaConf.load("./configs/VITON.yaml") config.model.params.img_H = IMG_H config.model.params.img_W = IMG_W params = config.model.params model = create_model(config_path=None, config=config) model.load_state_dict(torch.load("./checkpoints/VITONHD.ckpt", map_location="cpu")["state_dict"]) model = model.cuda() model.eval() sampler = PLMSSampler(model) # #### model init <<<< def stable_viton_model_hd( batch, n_steps, ): z, cond = model.get_input(batch, params.first_stage_key) bs = z.shape[0] c_crossattn = cond["c_crossattn"][0][:bs] if c_crossattn.ndim == 4: c_crossattn = model.get_learned_conditioning(c_crossattn) cond["c_crossattn"] = [c_crossattn] uc_cross = model.get_unconditional_conditioning(bs) uc_full = {"c_concat": cond["c_concat"], "c_crossattn": [uc_cross]} uc_full["first_stage_cond"] = cond["first_stage_cond"] for k, v in batch.items(): if isinstance(v, torch.Tensor): batch[k] = v.cuda() sampler.model.batch = batch ts = torch.full((1,), 999, device=z.device, dtype=torch.long) start_code = model.q_sample(z, ts) output, _, _ = sampler.sample( n_steps, bs, (4, IMG_H // 8, IMG_W // 8), cond, x_T=start_code, verbose=False, eta=0.0, unconditional_conditioning=uc_full, ) output = model.decode_first_stage(output) output = tensor2img(output) pil_output = Image.fromarray(output) return pil_output @spaces.GPU # TODO: turn on when final upload @torch.no_grad() def process_hd(vton_img, garm_img, n_steps): model_type = 'hd' category = 0 # 0:upperbody; 1:lowerbody; 2:dress stt = time.time() print('load images... ', end='') garm_img = Image.open(garm_img).resize((IMG_W, IMG_H)) vton_img = Image.open(vton_img).resize((IMG_W, IMG_H)) print('%.2fs' % (time.time() - stt)) stt = time.time() print('get agnostic map... ', end='') keypoints = openpose_model_hd(vton_img.resize((IMG_W, IMG_H))) model_parse, _ = parsing_model_hd(vton_img.resize((IMG_W, IMG_H))) mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) mask = mask.resize((IMG_W, IMG_H), Image.NEAREST) mask_gray = mask_gray.resize((IMG_W, IMG_H), Image.NEAREST) masked_vton_img = Image.composite(mask_gray, vton_img, mask) # agnostic map print('%.2fs' % (time.time() - stt)) stt = time.time() print('get densepose... ', end='') vton_img = vton_img.resize((IMG_W, IMG_H)) # size for densepose # densepose = densepose_model_hd.execute(vton_img) # densepose human_img_arg = _apply_exif_orientation(vton_img.resize((IMG_W, IMG_H))) human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) # verbosity = getattr(args, "verbosity", None) pose_img = args.func(args, human_img_arg) pose_img = pose_img[:, :, ::-1] pose_img = Image.fromarray(pose_img).resize((IMG_W, IMG_H)) print('%.2fs' % (time.time() - stt)) batch = get_batch( vton_img, garm_img, densepose, masked_vton_img, mask, IMG_H, IMG_W ) sample = stable_viton_model_hd( batch, n_steps ) return sample example_path = opj(os.path.dirname(__file__), 'examples') example_model_ps = sorted(glob(opj(example_path, "model/*"))) example_garment_ps = sorted(glob(opj(example_path, "garment/*"))) with gr.Blocks(css='style.css') as demo: gr.HTML( """

StableVITON Demo 👕👔👗

     
""" ) with gr.Row(): gr.Markdown("## Experience virtual try-on with your own images!") with gr.Row(): with gr.Column(): vton_img = gr.Image(label="Model", type="filepath", height=384, value=example_model_ps[0]) example = gr.Examples( inputs=vton_img, examples_per_page=14, examples=example_model_ps) with gr.Column(): garm_img = gr.Image(label="Garment", type="filepath", height=384, value=example_garment_ps[0]) example = gr.Examples( inputs=garm_img, examples_per_page=14, examples=example_garment_ps) with gr.Column(): result_gallery = gr.Image(label='Output', show_label=False, scale=1) # result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", scale=1) with gr.Column(): run_button = gr.Button(value="Run") # TODO: change default values (important!) # n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1) n_steps = gr.Slider(label="Steps", minimum=20, maximum=70, value=25, step=1) # guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1) # seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1) ips = [vton_img, garm_img, n_steps] run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery]) demo.queue().launch()