# Chart-based Dense Pose Estimation for Humans and Animals ## Overview The goal of chart-based DensePose methods is to establish dense correspondences between image pixels and 3D object mesh by splitting the latter into charts and estimating for each pixel the corresponding chart index `I` and local chart coordinates `(U, V)`.
Name | lr sched |
train time (s/iter) |
inference time (s/im) |
train mem (GB) |
box AP |
segm AP |
dp. AP GPS |
dp. AP GPSm |
model id | download |
---|---|---|---|---|---|---|---|---|---|---|
R_50_FPN_s1x_legacy | s1x | 0.307 | 0.051 | 3.2 | 58.1 | 58.2 | 52.1 | 54.9 | 164832157 | model | metrics |
R_101_FPN_s1x_legacy | s1x | 0.390 | 0.063 | 4.3 | 59.5 | 59.3 | 53.2 | 56.0 | 164832182 | model | metrics |
Name | lr sched |
train time (s/iter) |
inference time (s/im) |
train mem (GB) |
box AP |
segm AP |
dp. AP GPS |
dp. AP GPSm |
model id | download |
---|---|---|---|---|---|---|---|---|---|---|
R_50_FPN_s1x | s1x | 0.359 | 0.066 | 4.5 | 61.2 | 67.2 | 63.7 | 65.3 | 165712039 | model | metrics |
R_101_FPN_s1x | s1x | 0.428 | 0.079 | 5.8 | 62.3 | 67.8 | 64.5 | 66.2 | 165712084 | model | metrics |
Name | lr sched |
train time (s/iter) |
inference time (s/im) |
train mem (GB) |
box AP |
segm AP |
dp. AP GPS |
dp. AP GPSm |
model id | download |
---|---|---|---|---|---|---|---|---|---|---|
R_50_FPN_DL_s1x | s1x | 0.392 | 0.070 | 6.7 | 61.1 | 68.3 | 65.6 | 66.7 | 165712097 | model | metrics |
R_101_FPN_DL_s1x | s1x | 0.478 | 0.083 | 7.0 | 62.3 | 68.7 | 66.3 | 67.6 | 165712116 | model | metrics |
Name | lr sched |
train time (s/iter) |
inference time (s/im) |
train mem (GB) |
box AP |
segm AP |
dp. AP GPS |
dp. AP GPSm |
model id | download |
---|---|---|---|---|---|---|---|---|---|---|
R_50_FPN_WC1_s1x | s1x | 0.353 | 0.064 | 4.6 | 60.5 | 67.0 | 64.2 | 65.4 | 173862049 | model | metrics |
R_50_FPN_WC2_s1x | s1x | 0.364 | 0.066 | 4.8 | 60.7 | 66.9 | 64.2 | 65.7 | 173861455 | model | metrics |
R_50_FPN_DL_WC1_s1x | s1x | 0.397 | 0.068 | 6.7 | 61.1 | 68.1 | 65.8 | 67.0 | 173067973 | model | metrics |
R_50_FPN_DL_WC2_s1x | s1x | 0.410 | 0.070 | 6.8 | 60.8 | 67.9 | 65.6 | 66.7 | 173859335 | model | metrics |
R_101_FPN_WC1_s1x | s1x | 0.435 | 0.076 | 5.7 | 62.5 | 67.6 | 64.9 | 66.3 | 171402969 | model | metrics |
R_101_FPN_WC2_s1x | s1x | 0.450 | 0.078 | 5.7 | 62.3 | 67.6 | 64.8 | 66.4 | 173860702 | model | metrics |
R_101_FPN_DL_WC1_s1x | s1x | 0.479 | 0.081 | 7.9 | 62.0 | 68.4 | 66.2 | 67.2 | 173858525 | model | metrics |
R_101_FPN_DL_WC2_s1x | s1x | 0.491 | 0.082 | 7.6 | 61.7 | 68.3 | 65.9 | 67.2 | 173294801 | model | metrics |
Name | lr sched |
train time (s/iter) |
inference time (s/im) |
train mem (GB) |
box AP |
segm AP |
dp. AP GPS |
dp. AP GPSm |
model id | download |
---|---|---|---|---|---|---|---|---|---|---|
R_50_FPN_WC1M_s1x | s1x | 0.381 | 0.066 | 4.8 | 60.6 | 66.7 | 64.0 | 65.4 | 217144516 | model | metrics |
R_50_FPN_WC2M_s1x | s1x | 0.342 | 0.068 | 5.0 | 60.7 | 66.9 | 64.2 | 65.5 | 216245640 | model | metrics |
R_50_FPN_DL_WC1M_s1x | s1x | 0.371 | 0.068 | 6.0 | 60.7 | 68.0 | 65.2 | 66.7 | 216245703 | model | metrics |
R_50_FPN_DL_WC2M_s1x | s1x | 0.385 | 0.071 | 6.1 | 60.8 | 68.1 | 65.0 | 66.4 | 216245758 | model | metrics |
R_101_FPN_WC1M_s1x | s1x | 0.423 | 0.079 | 5.9 | 62.0 | 67.3 | 64.8 | 66.0 | 216453687 | model | metrics |
R_101_FPN_WC2M_s1x | s1x | 0.436 | 0.080 | 5.9 | 62.5 | 67.4 | 64.5 | 66.0 | 216245682 | model | metrics |
R_101_FPN_DL_WC1M_s1x | s1x | 0.453 | 0.079 | 6.8 | 62.0 | 68.1 | 66.4 | 67.1 | 216245771 | model | metrics |
R_101_FPN_DL_WC2M_s1x | s1x | 0.464 | 0.080 | 6.9 | 61.9 | 68.2 | 66.1 | 67.1 | 216245790 | model | metrics |
Name | lr sched |
train time (s/iter) |
inference time (s/im) |
train mem (GB) |
box AP |
segm AP |
dp. APex GPS |
dp. AP GPS |
dp. AP GPSm |
model id | download |
---|---|---|---|---|---|---|---|---|---|---|---|
R_50_FPN_DL_WC1M_3x_Atop10P_CA | 3x | 0.522 | 0.073 | 9.7 | 61.3 | 59.1 | 36.2 | 20.0 | 30.2 | 217578784 | model | metrics |
R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uniform | 3x | 1.939 | 0.072 | 10.1 | 60.9 | 58.5 | 37.2 | 21.5 | 31.0 | 256453729 | model | metrics |
R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_uv | 3x | 1.985 | 0.072 | 9.6 | 61.4 | 58.9 | 38.3 | 22.2 | 32.1 | 256452095 | model | metrics |
R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_finesegm | 3x | 2.047 | 0.072 | 10.3 | 60.9 | 58.5 | 36.7 | 20.7 | 30.7 | 256452819 | model | metrics |
R_50_FPN_DL_WC1M_3x_Atop10P_CA_B_coarsesegm | 3x | 1.830 | 0.070 | 9.6 | 61.3 | 59.2 | 37.9 | 21.5 | 31.6 | 256455697 | model | metrics |