MODEL: META_ARCHITECTURE: "PanopticDeepLab" BACKBONE: FREEZE_AT: 0 RESNETS: OUT_FEATURES: ["res2", "res3", "res5"] RES5_DILATION: 2 SEM_SEG_HEAD: NAME: "PanopticDeepLabSemSegHead" IN_FEATURES: ["res2", "res3", "res5"] PROJECT_FEATURES: ["res2", "res3"] PROJECT_CHANNELS: [32, 64] ASPP_CHANNELS: 256 ASPP_DILATIONS: [6, 12, 18] ASPP_DROPOUT: 0.1 HEAD_CHANNELS: 256 CONVS_DIM: 256 COMMON_STRIDE: 4 NUM_CLASSES: 19 LOSS_TYPE: "hard_pixel_mining" NORM: "SyncBN" INS_EMBED_HEAD: NAME: "PanopticDeepLabInsEmbedHead" IN_FEATURES: ["res2", "res3", "res5"] PROJECT_FEATURES: ["res2", "res3"] PROJECT_CHANNELS: [32, 64] ASPP_CHANNELS: 256 ASPP_DILATIONS: [6, 12, 18] ASPP_DROPOUT: 0.1 HEAD_CHANNELS: 32 CONVS_DIM: 128 COMMON_STRIDE: 4 NORM: "SyncBN" CENTER_LOSS_WEIGHT: 200.0 OFFSET_LOSS_WEIGHT: 0.01 PANOPTIC_DEEPLAB: STUFF_AREA: 2048 CENTER_THRESHOLD: 0.1 NMS_KERNEL: 7 TOP_K_INSTANCE: 200 DATASETS: TRAIN: ("cityscapes_fine_panoptic_train",) TEST: ("cityscapes_fine_panoptic_val",) SOLVER: OPTIMIZER: "ADAM" BASE_LR: 0.001 WEIGHT_DECAY: 0.0 WEIGHT_DECAY_NORM: 0.0 WEIGHT_DECAY_BIAS: 0.0 MAX_ITER: 60000 LR_SCHEDULER_NAME: "WarmupPolyLR" IMS_PER_BATCH: 32 INPUT: MIN_SIZE_TRAIN: (512, 640, 704, 832, 896, 1024, 1152, 1216, 1344, 1408, 1536, 1664, 1728, 1856, 1920, 2048) MIN_SIZE_TRAIN_SAMPLING: "choice" MIN_SIZE_TEST: 1024 MAX_SIZE_TRAIN: 4096 MAX_SIZE_TEST: 2048 CROP: ENABLED: True TYPE: "absolute" SIZE: (1024, 2048) DATALOADER: NUM_WORKERS: 10 VERSION: 2