#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. """ TridentNet Training Script. This script is a simplified version of the training script in detectron2/tools. """ import os from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.engine import ( default_argument_parser, default_setup, DefaultTrainer, launch, ) from detectron2.evaluation import COCOEvaluator from tridentnet import add_tridentnet_config class Trainer(DefaultTrainer): @classmethod def build_evaluator(cls, cfg, dataset_name, output_folder=None): if output_folder is None: output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") return COCOEvaluator(dataset_name, output_dir=output_folder) def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_tridentnet_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() default_setup(cfg, args) return cfg def main(args): cfg = setup(args) if args.eval_only: model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) res = Trainer.test(cfg, model) return res trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) return trainer.train() def invoke_main() -> None: args = default_argument_parser().parse_args() print("Command Line Args:", args) launch( main, args.num_gpus, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), ) if __name__ == "__main__": invoke_main() # pragma: no cover