# Continuous Surface Embeddings for Dense Pose Estimation for Humans and Animals ## Overview
The pipeline uses [Faster R-CNN](https://arxiv.org/abs/1506.01497) with [Feature Pyramid Network](https://arxiv.org/abs/1612.03144) meta architecture outlined in Figure 1. For each detected object, the model predicts its coarse segmentation `S` (2 channels: foreground / background) and the embedding `E` (16 channels). At the same time, the embedder produces vertex embeddings `Ê` for the corresponding mesh. Universal positional embeddings `E` and vertex embeddings `Ê` are matched to derive for each pixel its continuous surface embedding.

Figure 1. DensePose continuous surface embeddings architecture based on Faster R-CNN with Feature Pyramid Network (FPN).

### Datasets For more details on datasets used for training and validation of continuous surface embeddings models, please refer to the [DensePose Datasets](DENSEPOSE_DATASETS.md) page. ## Model Zoo and Baselines ### Human CSE Models Continuous surface embeddings models for humans trained using the protocols from [Neverova et al, 2020](https://arxiv.org/abs/2011.12438). Models trained with hard assignment loss ℒ:
Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
segm
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_s1x s1x 0.349 0.060 6.3 61.1 67.1 64.4 65.7 251155172 model | metrics
R_101_FPN_s1x s1x 0.461 0.071 7.4 62.3 67.2 64.7 65.8 251155500 model | metrics
R_50_FPN_DL_s1x s1x 0.399 0.061 7.0 60.8 67.8 65.5 66.4 251156349 model | metrics
R_101_FPN_DL_s1x s1x 0.504 0.074 8.3 61.5 68.0 65.6 66.6 251156606 model | metrics
Models trained with soft assignment loss ℒσ:
Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
segm
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_soft_s1x s1x 0.357 0.057 9.7 61.3 66.9 64.3 65.4 250533982 model | metrics
R_101_FPN_soft_s1x s1x 0.464 0.071 10.5 62.1 67.3 64.5 66.0 250712522 model | metrics
R_50_FPN_DL_soft_s1x s1x 0.427 0.062 11.3 60.8 68.0 66.1 66.7 250713703 model | metrics
R_101_FPN_DL_soft_s1x s1x 0.483 0.071 12.2 61.5 68.2 66.2 67.1 250713061 model | metrics
### Animal CSE Models Models obtained by finetuning human CSE models on animals data from `ds1_train` (see the [DensePose LVIS](DENSEPOSE_DATASETS.md#continuous-surface-embeddings-annotations-3) section for more details on the datasets) with soft assignment loss ℒσ:
Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
segm
AP
dp. AP
GPS
dp. AP
GPSm
model id download
R_50_FPN_soft_chimps_finetune_4k 4K 0.569 0.051 4.7 62.0 59.0 32.2 39.6 253146869 model | metrics
R_50_FPN_soft_animals_finetune_4k 4K 0.381 0.061 7.3 44.9 55.5 21.3 28.8 253145793 model | metrics
R_50_FPN_soft_animals_CA_finetune_4k 4K 0.412 0.059 7.1 53.4 59.5 25.4 33.4 253498611 model | metrics
Acronyms: `CA`: class agnostic training, where all annotated instances are mapped into a single category Models obtained by finetuning human CSE models on animals data from `ds2_train` dataset with soft assignment loss ℒσ and, for some schedules, cycle losses. Please refer to [DensePose LVIS](DENSEPOSE_DATASETS.md#continuous-surface-embeddings-annotations-3) section for details on the dataset and to [Neverova et al, 2021]() for details on cycle losses.
Name lr
sched
train
time
(s/iter)
inference
time
(s/im)
train
mem
(GB)
box
AP
segm
AP
dp. AP
GPS
dp. AP
GPSm
GErr GPS model id download
R_50_FPN_soft_animals_I0_finetune_16k 16k 0.386 0.058 8.4 54.2 67.0 29.0 38.6 13.2 85.4 270727112 model | metrics
R_50_FPN_soft_animals_I0_finetune_m2m_16k 16k 0.508 0.056 12.2 54.1 67.3 28.6 38.4 12.5 87.6 270982215 model | metrics
R_50_FPN_soft_animals_I0_finetune_i2m_16k 16k 0.483 0.056 9.7 54.0 66.6 28.9 38.3 11.0 88.9 270727461 model | metrics
## References If you use DensePose methods based on continuous surface embeddings, please take the references from the following BibTeX entries: Continuous surface embeddings: ``` @InProceedings{Neverova2020ContinuousSurfaceEmbeddings, title = {Continuous Surface Embeddings}, author = {Neverova, Natalia and Novotny, David and Khalidov, Vasil and Szafraniec, Marc and Labatut, Patrick and Vedaldi, Andrea}, journal = {Advances in Neural Information Processing Systems}, year = {2020}, } ``` Cycle Losses: ``` @InProceedings{Neverova2021UniversalCanonicalMaps, title = {Discovering Relationships between Object Categories via Universal Canonical Maps}, author = {Neverova, Natalia and Sanakoyeu, Artsiom and Novotny, David and Labatut, Patrick and Vedaldi, Andrea}, journal = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2021}, } ```