rmaitest commited on
Commit
52a7d40
·
verified ·
1 Parent(s): e9f2f98

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from huggingface_hub import hf_hub_download
4
+ import joblib
5
+
6
+ # Load the model
7
+ repo_id = "rmaitest/mlmodel2"
8
+ model_file = "house_price_model.pkl" # Adjust as necessary
9
+
10
+ # Download and load the model
11
+ model_path = hf_hub_download(repo_id, model_file)
12
+ model = joblib.load(model_path)
13
+
14
+ def predict_price(size, bedrooms, age):
15
+ # Create a DataFrame from the input
16
+ input_data = pd.DataFrame({
17
+ 'Size (sq ft)': [size],
18
+ 'Number of Bedrooms': [bedrooms],
19
+ 'Age of House (years)': [age]
20
+ })
21
+
22
+ # Make prediction
23
+ prediction = model.predict(input_data)
24
+ return prediction[0]
25
+
26
+ # Define the Gradio interface
27
+ iface = gr.Interface(
28
+ fn=predict_price,
29
+ inputs=[
30
+ gr.inputs.Number(label="Size (sq ft)"),
31
+ gr.inputs.Number(label="Number of Bedrooms"),
32
+ gr.inputs.Number(label="Age of House (years)")
33
+ ],
34
+ outputs=gr.outputs.Number(label="Predicted Price ($)"),
35
+ title="House Price Prediction",
36
+ description="Enter the size, number of bedrooms, and age of the house to get the predicted price."
37
+ )
38
+
39
+ # Launch the interface
40
+ if __name__ == "__main__":
41
+ iface.launch()