Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,16 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import re
|
5 |
import pickle
|
|
|
6 |
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
7 |
from sklearn.preprocessing import LabelEncoder
|
8 |
from nltk.corpus import stopwords
|
9 |
from nltk.stem import WordNetLemmatizer
|
10 |
import inflect
|
11 |
|
|
|
|
|
|
|
12 |
# Load the tokenizer, label encoder, and model
|
13 |
def load_resources():
|
14 |
tokenizer = AutoTokenizer.from_pretrained('./transformer_tokenizer')
|
@@ -90,4 +94,4 @@ iface = gr.Interface(fn=predict_spam,
|
|
90 |
description="Enter an SMS message to classify it as spam or ham.")
|
91 |
|
92 |
# Launch the interface
|
93 |
-
iface.launch()
|
|
|
3 |
import numpy as np
|
4 |
import re
|
5 |
import pickle
|
6 |
+
import nltk
|
7 |
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
8 |
from sklearn.preprocessing import LabelEncoder
|
9 |
from nltk.corpus import stopwords
|
10 |
from nltk.stem import WordNetLemmatizer
|
11 |
import inflect
|
12 |
|
13 |
+
# Ensure NLTK stopwords are downloaded
|
14 |
+
nltk.download('stopwords')
|
15 |
+
|
16 |
# Load the tokenizer, label encoder, and model
|
17 |
def load_resources():
|
18 |
tokenizer = AutoTokenizer.from_pretrained('./transformer_tokenizer')
|
|
|
94 |
description="Enter an SMS message to classify it as spam or ham.")
|
95 |
|
96 |
# Launch the interface
|
97 |
+
iface.launch(share=True)
|