rmdhirr commited on
Commit
e566c6c
·
verified ·
1 Parent(s): 8e69231

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -93
app.py CHANGED
@@ -1,94 +1,93 @@
1
- import gradio as gr
2
- import pandas as pd
3
- import numpy as np
4
- import re
5
- import pickle
6
- from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
7
- from sklearn.preprocessing import LabelEncoder
8
- from sklearn.metrics import accuracy_score
9
- from nltk.corpus import stopwords
10
- from nltk.stem import WordNetLemmatizer
11
- import inflect
12
-
13
- # Load the tokenizer, label encoder, and model
14
- def load_resources():
15
- tokenizer = AutoTokenizer.from_pretrained('./transformer_tokenizer')
16
- with open('./label_encoder_tf.pickle', 'rb') as handle:
17
- encoder = pickle.load(handle)
18
- model = TFAutoModelForSequenceClassification.from_pretrained('./transformer_model')
19
- return tokenizer, encoder, model
20
-
21
- tokenizer, encoder, model = load_resources()
22
-
23
- # Preprocessing functions
24
- def expand_contractions(text, contractions_dict):
25
- contractions_pattern = re.compile('({})'.format('|'.join(contractions_dict.keys())), flags=re.IGNORECASE | re.DOTALL)
26
- def expand_match(contraction):
27
- match = contraction.group(0)
28
- first_char = match[0]
29
- expanded_contraction = contractions_dict.get(match.lower(), match)
30
- return first_char + expanded_contraction[1:]
31
- expanded_text = contractions_pattern.sub(expand_match, text)
32
- return re.sub("'", "", expanded_text)
33
-
34
- def convert_numbers_to_words(text):
35
- p = inflect.engine()
36
- words = text.split()
37
- return ' '.join([p.number_to_words(word) if word.isdigit() else word for word in words])
38
-
39
- def preprocess_text(text):
40
- contractions_dict = {
41
- "ain't": "am not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because",
42
- "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not",
43
- "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not",
44
- "haven't": "have not", "he'd": "he had", "he'd've": "he would have", "he'll": "he will", "he'll've": "he will have",
45
- "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is",
46
- "I'd": "I had", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have", "I'm": "I am", "I've": "I have",
47
- "isn't": "is not", "it'd": "it had", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have",
48
- "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not",
49
- "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have",
50
- "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not",
51
- "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
52
- "she'd": "she had", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is",
53
- "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have",
54
- "so's": "so is", "that'd": "that had", "that'd've": "that would have", "that's": "that is", "there'd": "there had",
55
- "there'd've": "there would have", "there's": "there is", "they'd": "they had", "they'd've": "they would have",
56
- "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have",
57
- "wasn't": "was not", "we'd": "we had", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have",
58
- "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have",
59
- "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have",
60
- "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have",
61
- "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not",
62
- "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have",
63
- "y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have", "y'all're": "you all are",
64
- "y'all've": "you all have", "you'd": "you had", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have",
65
- "you're": "you are", "you've": "you have"
66
- }
67
- text = text.lower()
68
- text = expand_contractions(text, contractions_dict)
69
- text = convert_numbers_to_words(text)
70
- text = re.sub(r'[^\w\s]', '', text)
71
- stop_words = set(stopwords.words('english'))
72
- text = ' '.join([word for word in text.split() if word not in stop_words])
73
- lemmatizer = WordNetLemmatizer()
74
- text = ' '.join([lemmatizer.lemmatize(word) for word in text.split()])
75
- return text
76
-
77
- # Define the prediction function
78
- def predict_spam(text):
79
- preprocessed_text = preprocess_text(text)
80
- encoding = tokenizer(preprocessed_text, return_tensors='tf', truncation=True, padding=True)
81
- prediction = model(encoding).logits
82
- predicted_label = np.argmax(prediction, axis=1)
83
- decoded_label = encoder.inverse_transform(predicted_label)
84
- return decoded_label[0]
85
-
86
- # Create the Gradio interface
87
- iface = gr.Interface(fn=predict_spam,
88
- inputs=gr.inputs.Textbox(lines=2, placeholder="Enter SMS message here..."),
89
- outputs="text",
90
- title="SMS Spam Classification with Transformer Model",
91
- description="Enter an SMS message to classify it as spam or ham.")
92
-
93
- # Launch the interface
94
  iface.launch()
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ import re
5
+ import pickle
6
+ from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
7
+ from sklearn.preprocessing import LabelEncoder
8
+ from nltk.corpus import stopwords
9
+ from nltk.stem import WordNetLemmatizer
10
+ import inflect
11
+
12
+ # Load the tokenizer, label encoder, and model
13
+ def load_resources():
14
+ tokenizer = AutoTokenizer.from_pretrained('./transformer_tokenizer')
15
+ with open('./label_encoder_tf.pickle', 'rb') as handle:
16
+ encoder = pickle.load(handle)
17
+ model = TFAutoModelForSequenceClassification.from_pretrained('./transformer_model')
18
+ return tokenizer, encoder, model
19
+
20
+ tokenizer, encoder, model = load_resources()
21
+
22
+ # Preprocessing functions
23
+ def expand_contractions(text, contractions_dict):
24
+ contractions_pattern = re.compile('({})'.format('|'.join(contractions_dict.keys())), flags=re.IGNORECASE | re.DOTALL)
25
+ def expand_match(contraction):
26
+ match = contraction.group(0)
27
+ first_char = match[0]
28
+ expanded_contraction = contractions_dict.get(match.lower(), match)
29
+ return first_char + expanded_contraction[1:]
30
+ expanded_text = contractions_pattern.sub(expand_match, text)
31
+ return re.sub("'", "", expanded_text)
32
+
33
+ def convert_numbers_to_words(text):
34
+ p = inflect.engine()
35
+ words = text.split()
36
+ return ' '.join([p.number_to_words(word) if word.isdigit() else word for word in words])
37
+
38
+ def preprocess_text(text):
39
+ contractions_dict = {
40
+ "ain't": "am not", "aren't": "are not", "can't": "cannot", "can't've": "cannot have", "'cause": "because",
41
+ "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not",
42
+ "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not",
43
+ "haven't": "have not", "he'd": "he had", "he'd've": "he would have", "he'll": "he will", "he'll've": "he will have",
44
+ "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is",
45
+ "I'd": "I had", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have", "I'm": "I am", "I've": "I have",
46
+ "isn't": "is not", "it'd": "it had", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have",
47
+ "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not",
48
+ "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have",
49
+ "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not",
50
+ "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have",
51
+ "she'd": "she had", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is",
52
+ "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have",
53
+ "so's": "so is", "that'd": "that had", "that'd've": "that would have", "that's": "that is", "there'd": "there had",
54
+ "there'd've": "there would have", "there's": "there is", "they'd": "they had", "they'd've": "they would have",
55
+ "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have",
56
+ "wasn't": "was not", "we'd": "we had", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have",
57
+ "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have",
58
+ "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have",
59
+ "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have",
60
+ "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not",
61
+ "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have",
62
+ "y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have", "y'all're": "you all are",
63
+ "y'all've": "you all have", "you'd": "you had", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have",
64
+ "you're": "you are", "you've": "you have"
65
+ }
66
+ text = text.lower()
67
+ text = expand_contractions(text, contractions_dict)
68
+ text = convert_numbers_to_words(text)
69
+ text = re.sub(r'[^\w\s]', '', text)
70
+ stop_words = set(stopwords.words('english'))
71
+ text = ' '.join([word for word in text.split() if word not in stop_words])
72
+ lemmatizer = WordNetLemmatizer()
73
+ text = ' '.join([lemmatizer.lemmatize(word) for word in text.split()])
74
+ return text
75
+
76
+ # Define the prediction function
77
+ def predict_spam(text):
78
+ preprocessed_text = preprocess_text(text)
79
+ encoding = tokenizer(preprocessed_text, return_tensors='tf', truncation=True, padding=True)
80
+ prediction = model(encoding).logits
81
+ predicted_label = np.argmax(prediction, axis=1)
82
+ decoded_label = encoder.inverse_transform(predicted_label)
83
+ return decoded_label[0]
84
+
85
+ # Create the Gradio interface
86
+ iface = gr.Interface(fn=predict_spam,
87
+ inputs=gr.Textbox(lines=2, placeholder="Enter SMS message here..."),
88
+ outputs="text",
89
+ title="SMS Spam Classification with Transformer Model",
90
+ description="Enter an SMS message to classify it as spam or ham.")
91
+
92
+ # Launch the interface
 
93
  iface.launch()