Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,32 +25,18 @@ nltk.download('wordnet')
|
|
25 |
STOPWORDS = set(stopwords.words('english'))
|
26 |
lemmatizer = WordNetLemmatizer()
|
27 |
|
28 |
-
def normalize_length(
|
29 |
-
|
30 |
-
|
31 |
-
else:
|
32 |
-
url = url[:target_length]
|
33 |
-
return url
|
34 |
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
tokens = word_tokenize(
|
43 |
-
tokens = [word for word in tokens if word not in STOPWORDS]
|
44 |
-
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
45 |
-
return ' '.join(tokens)
|
46 |
-
|
47 |
-
def preprocess_html(html):
|
48 |
-
html = re.sub(r'<[^>]+>', ' ', html)
|
49 |
-
html = html.lower()
|
50 |
-
html = re.sub(r'https?://', '', html)
|
51 |
-
html = re.sub(r'[^a-zA-Z0-9]', ' ', html)
|
52 |
-
html = re.sub(r'\s+', ' ', html).strip()
|
53 |
-
tokens = word_tokenize(html)
|
54 |
tokens = [word for word in tokens if word not in STOPWORDS]
|
55 |
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
56 |
return ' '.join(tokens)
|
@@ -73,20 +59,25 @@ def preprocess_input(input_text, tokenizer, max_length):
|
|
73 |
def get_prediction(input_text, input_type):
|
74 |
is_url = input_type == "URL"
|
75 |
if is_url:
|
76 |
-
cleaned_text =
|
77 |
input_data = preprocess_input(cleaned_text, url_tokenizer, max_url_length)
|
78 |
input_data = [input_data, np.zeros((1, max_html_length))] # dummy HTML input
|
79 |
else:
|
80 |
-
cleaned_text =
|
81 |
input_data = preprocess_input(cleaned_text, html_tokenizer, max_html_length)
|
82 |
input_data = [np.zeros((1, max_url_length)), input_data] # dummy URL input
|
83 |
|
84 |
prediction = model.predict(input_data)[0][0]
|
85 |
return prediction
|
86 |
|
|
|
|
|
|
|
|
|
|
|
87 |
def phishing_detection(input_text, input_type):
|
88 |
-
prediction =
|
89 |
-
threshold = 0.5 #
|
90 |
if prediction > threshold:
|
91 |
return f"Warning: This site is likely a phishing site! ({prediction:.2f})"
|
92 |
else:
|
|
|
25 |
STOPWORDS = set(stopwords.words('english'))
|
26 |
lemmatizer = WordNetLemmatizer()
|
27 |
|
28 |
+
def normalize_length(text, target_length):
|
29 |
+
text = text[:target_length].ljust(target_length)
|
30 |
+
return text
|
|
|
|
|
|
|
31 |
|
32 |
+
def preprocess_text(text, is_url=True):
|
33 |
+
text = text.lower()
|
34 |
+
if is_url:
|
35 |
+
text = re.sub(r'https?://', '', text)
|
36 |
+
text = re.sub(r'www\.', '', text)
|
37 |
+
text = re.sub(r'[^a-zA-Z0-9]', ' ', text)
|
38 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
39 |
+
tokens = word_tokenize(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
tokens = [word for word in tokens if word not in STOPWORDS]
|
41 |
tokens = [lemmatizer.lemmatize(word) for word in tokens]
|
42 |
return ' '.join(tokens)
|
|
|
59 |
def get_prediction(input_text, input_type):
|
60 |
is_url = input_type == "URL"
|
61 |
if is_url:
|
62 |
+
cleaned_text = preprocess_text(input_text, is_url=True)
|
63 |
input_data = preprocess_input(cleaned_text, url_tokenizer, max_url_length)
|
64 |
input_data = [input_data, np.zeros((1, max_html_length))] # dummy HTML input
|
65 |
else:
|
66 |
+
cleaned_text = preprocess_text(input_text, is_url=False)
|
67 |
input_data = preprocess_input(cleaned_text, html_tokenizer, max_html_length)
|
68 |
input_data = [np.zeros((1, max_url_length)), input_data] # dummy URL input
|
69 |
|
70 |
prediction = model.predict(input_data)[0][0]
|
71 |
return prediction
|
72 |
|
73 |
+
def ensemble_prediction(input_text, input_type, n_ensemble=5):
|
74 |
+
predictions = [get_prediction(input_text, input_type) for _ in range(n_ensemble)]
|
75 |
+
avg_prediction = np.mean(predictions)
|
76 |
+
return avg_prediction
|
77 |
+
|
78 |
def phishing_detection(input_text, input_type):
|
79 |
+
prediction = ensemble_prediction(input_text, input_type)
|
80 |
+
threshold = 0.5 # Keep the threshold unchanged
|
81 |
if prediction > threshold:
|
82 |
return f"Warning: This site is likely a phishing site! ({prediction:.2f})"
|
83 |
else:
|