File size: 29,125 Bytes
8e8833a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_ as __call_trunc_normal_
from einops import rearrange
from cwm.model.model_utils import Block, _cfg, PatchEmbed, get_sinusoid_encoding_table
from torch import Tensor
import cwm.utils as utils
def trunc_normal_(tensor, mean=0., std=1.):
__call_trunc_normal_(tensor, mean=mean, std=std, a=-std, b=std)
def interpolate_pos_encoding(pos_embed, n_frames, h, w):
N = pos_embed.shape[1]
if N == (h * w * n_frames):
return pos_embed
old_h = old_w = int((N / n_frames) ** 0.5)
patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2)
patch_pos_embed = F.interpolate(
patch_pos_embed,
size=(h, w),
mode='bicubic',
)
return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0)
PRINT_PADDING = False
class PretrainVisionTransformerEncoder(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, num_classes=0, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, tubelet_size=2,
use_learnable_pos_emb=False, num_frames=16, embed_per_frame=False, clumping_factor=None, block_func=Block, k_bias=False, interp_noise=False, block_kwargs={}, legacy=False, xla_flash=False, learn_pos_embed=False):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_size = (tubelet_size,) + patch_size
self.pt, self.ph, self.pw = self.patch_size
self.h = int(img_size / self.ph)
self.w = int(img_size / self.pw)
self.hw = self.h * self.w
self.clumping_factor = clumping_factor
self.interp_noise = interp_noise
self.embed_dim = embed_dim
self.num_heads = num_heads
if self.clumping_factor is not None: # Clump the context frame for memory efficiency
self.clumping_embed = nn.Conv3d(in_channels=embed_dim, out_channels=embed_dim,
kernel_size=(tubelet_size, clumping_factor, clumping_factor),
stride=(tubelet_size, clumping_factor, clumping_factor))
self._embed_per_frame = embed_per_frame
if not self._embed_per_frame:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,tubelet_size=tubelet_size,num_frames=num_frames)
num_patches = self.patch_embed.num_patches
elif self._embed_per_frame:
assert (num_frames % tubelet_size) == 0
num_embeddings = (num_frames // tubelet_size)
self.patch_embed = nn.ModuleList([
PatchEmbed(
img_size=img_size, patch_size=patch_size,
in_chans=in_chans, embed_dim=embed_dim,
tubelet_size=tubelet_size, num_frames=tubelet_size)
for _ in range(num_embeddings)])
num_patches = self.patch_embed[0].num_patches * num_embeddings
self.num_patches = num_patches
self.num_frames = num_frames
print("NUM PATCHES IN ENCODER", self.num_patches)
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim)
if learn_pos_embed:
self.pos_embed = nn.Parameter(self.pos_embed)
self.learn_pos_embed = learn_pos_embed
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
block_func(
dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, **block_kwargs, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if use_learnable_pos_emb:
trunc_normal_(self.pos_embed, std=.02)
self.apply(self._init_weights)
def _set_pos_embed(self, dim=None):
if dim is None:
dim = self.embed_dim
if self.pos_embed is None:
self.pos_embed = get_sinusoid_encoding_table(
self.num_patches, dim)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def _get_pos_embed(self):
return self.pos_embed
def forward_block(self, x, idx):
return self.blocks[idx](x)
def interpolate_tensor_with_mask_token(self,
x: Tensor, mask: Tensor, mask_token: Tensor, invert: bool = True
) -> Tensor:
"""
Where mask == (0 if invert else 1), return x
where mask == (1 if invert else 0), return mask_token
Linearly interpolate between these using value of mask.
"""
# mask_token = mask_token
# breakpoint()
B, N, C = x.shape
assert mask.shape[1] == N, (
f"Number of tokens in mask ({mask.shape[1]}) does not match "
f"number of tokens in input ({N})"
)
assert mask_token.shape[-1] == C, (
f"Dimensionality of mask token ({mask_token.shape[-1]}) does not match "
f"dimensionality of tokens in input ({C})"
)
# convert mask to interpolation weights in range [0., 1.]
mask = mask.to(x).clip(min=0.0, max=1.0)
mask = (1.0 - mask) if invert else mask
mask = mask.unsqueeze(-1) # [B, N, 1]
# expand mask token
mask_token = mask_token.view(1, 1, C).expand(B, N, -1)
# interpolate
start = mask_token
end = x
return start + mask * (end - start)
def interpolate_tensor_with_noise(self,
x: Tensor, mask: Tensor, invert: bool = True
) -> Tensor:
"""
Where mask == (0 if invert else 1), return x
where mask == (1 if invert else 0), return mask_token
Linearly interpolate between these using value of mask.
"""
# mask_token = mask_token
# breakpoint()
B, N, C = x.shape
assert mask.shape[1] == N, (
f"Number of tokens in mask ({mask.shape[1]}) does not match "
f"number of tokens in input ({N})"
)
# convert mask to interpolation weights in range [0., 1.]
mask = mask.to(x).clip(min=0.0, max=1.0)
mask = (1.0 - mask) if invert else mask
mask = mask.unsqueeze(-1) # [B, N, 1]
# ImageNet mean and std
mean = torch.tensor([0.485, 0.456, 0.406]).view(3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225]).view(3, 1, 1)
# Generate a 3x8x8 patch of random numbers from a normal distribution
# with the same mean and std as ImageNet images
rand_vec = torch.randn(B, N, 3, self.patch_size[-2], self.patch_size[-1]) * std + mean
rand_vec = rand_vec.to(x.device).to(x.dtype).view(B, N, -1)
# interpolate
start = rand_vec
end = x
return start + mask * (end - start)
def tokenize(self, x, mask=None):
if not self._embed_per_frame:
x = self.patch_embed(x)
elif self._embed_per_frame:
x = torch.cat([
self.patch_embed[i](
x[:,:,(i*self.pt):((i+1)*self.pt)])
for i in range(len(self.patch_embed))], 1)
pos_embed = self._get_pos_embed().type_as(x).to(x.device).clone()
if not self._learnable_pos_embed:
pos_embed = pos_embed.detach()
x = x + pos_embed
return (x, mask)
def tokenize_and_mask(self, x, mask):
x, mask = self.tokenize(x, mask)
B, _, C = x.shape
# breakpoint()
x_vis = x[~mask].reshape(B, -1, C)
return x_vis
def tokenize_and_mask_variable_size(self, x, mask):
x, mask = self.tokenize(x, mask)
B, _, C = x.shape
all_batches = []
max_len = 0
all_len = []
for i in range(B):
x_vis = x[i, ~mask[i]]
if x_vis.shape[0] > max_len:
max_len = x_vis.shape[0]
all_batches.append(x_vis)
all_len.append(x_vis.shape[0])
#pad all batches to max_len in a single line
x_vis = torch.stack([F.pad(batch, (0,0,0,max_len-batch.shape[0]), mode='constant', value=0) for batch in all_batches])
return x_vis, all_len
def forward_features(self, x, mask, move_patches, static_patches, delta, mask_token, res=1, return_feat_layer=None):
_, _, T, H, W = x.shape
if self.interp_noise:
#patchify x with patch size[0], patch size[1]
p0 = self.patch_size[-2]
p1 = self.patch_size[-1]
x = rearrange(x, 'b c t (h p0) (w p1) -> b (t h w) (p0 p1 c)', p0=p0, p1=p1, h=H//p0, w=W//p1) # x: [B, N, C]
x = self.interpolate_tensor_with_noise(x, mask, invert=True)
x = rearrange(x, 'b n (p c) -> b n p c', c=3)
# Notice: To visualize the reconstruction video, we add the predict and the original mean and var of each patch.
x = rearrange(x,
'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)',
p0=1,
p1=self.patch_size[-2],
p2=self.patch_size[-1],
h=H//self.patch_size[-2],
w=W//self.patch_size[-1])
x = embed = self.patch_embed(x)
if res != 1:
p0 = self.patch_size[-2]
p1 = self.patch_size[-1]
pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(256 // p0 * res), int(256 // p1 * res))
else:
pos_embed = self._get_pos_embed()
pos_embed = pos_embed.type_as(x) # .to(x.device).clone()
if not self.learn_pos_embed:
pos_embed = pos_embed.to(x.device).clone().detach()
x = x + pos_embed
B, _, C = x.shape
# x_vis = x[~mask].reshape(B, -1, C) # ~mask means visible
if not self.interp_noise:
x_vis = self.interpolate_tensor_with_mask_token(x, mask, mask_token, invert=True)
else:
x_vis = x
if move_patches is not None:
assert B == 1, "Only support batch size 1 for now"
for (px, py) in move_patches:
idx = px * self.w + py
dx, dy = delta
nx, ny = px + dx, py + dy
new_idx = nx * self.w + ny + (self.patch_embed.num_frames - 1) * (self.h * self.w)
emb = embed[:, idx]
pos_emb = pos_embed[:, new_idx]
emb = emb + pos_emb
x_vis = torch.cat([x_vis, emb[None]], 1)
if static_patches is not None:
for (px, py) in static_patches:
idx = px * self.w + py
new_idx = px * self.w + py + (self.patch_embed.num_frames - 1) * (self.h * self.w)
emb = embed[:, idx]
pos_emb = pos_embed[:, new_idx]
emb = emb + pos_emb
x_vis = torch.cat([x_vis, emb[None]], 1)
for blk_idx, blk in enumerate(self.blocks):
x_vis = blk(x_vis)
if blk_idx == return_feat_layer:
return x_vis
x_vis = self.norm(x_vis)
return x_vis
def _set_inputs(self, *args, **kwargs):
pass
def forward(self, x, mask, mask_token, return_feat_layer=None, timestamps=None, move_patches=None, static_patches=None, delta=None, res=1):
self._set_inputs(x, mask)
# pass input through the encoder
x = self.forward_features(x, mask, move_patches, static_patches, delta, mask_token, return_feat_layer=return_feat_layer, res=res)
# if return_feat_layer is not None and is lesser than the number of blocks it means that we are returning the
# features of an intermediate block layer. in this case we do not want to apply the head layer
if return_feat_layer is not None and return_feat_layer < len(self.blocks):
return x
# if we are passing through the entire encoder transformer we apply the head layer
x = self.head(x)
return x
class PretrainVisionTransformerDecoder(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, patch_size=(16, 16), num_classes=768, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, block_func=Block, block_kwargs={}, k_bias=False, legacy=True, xla_flash=False
):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_size = patch_size
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
block_func(
dim=embed_dim, in_dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, **block_kwargs, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_block(self, x, idx):
return self.blocks[idx](x)
def get_last_tokens(self, x, return_token_num):
if return_token_num > 0:
return self.head(self.norm(x[:,-return_token_num:]))
elif return_token_num == 0:
return self.head(self.norm(x))[:,x.size(1):]
else:
return self.head(self.norm(x))
def forward(self, x, return_token_num, return_feat_layer=None):
# pass input through the decoder
for blk_idx, blk in enumerate(self.blocks):
x = blk(x)
# if we are returning the features of an intermediate block
# do so and skip the remaining computation
if blk_idx == return_feat_layer:
return x
if return_token_num > 0:
x = self.head(self.norm(x[:, -return_token_num:])) # only return the mask tokens predict pixels
else:
x = self.head(self.norm(x))
return x
class PretrainVisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
default_input_kwargs = {'unnormalize': True}
def __init__(self,
img_size=224,
patch_size=(16, 16),
main_input=None,
main_input_kwargs=default_input_kwargs,
encoder_func=PretrainVisionTransformerEncoder,
encoder_in_chans=3,
encoder_num_classes=0,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_block_func=Block,
encoder_block_kwargs={},
decoder_num_classes=None, # For pretraining this parameter isn't relevant but must be set according to tube&patch size
decoder_embed_dim=512,
decoder_depth=8,
decoder_num_heads=8,
decoder_block_func=Block,
decoder_block_kwargs={},
mlp_ratio=4.,
qkv_bias=False,
k_bias=False,
qk_scale=None,
num_frames=16,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=nn.LayerNorm,
init_values=0.,
spacetime_separable_pos_embed=False,
tubelet_size=2,
num_classes=0, # avoid the error from create_fn in timm
in_chans=0, # avoid the error from create_fn in timm
embed_per_frame=False,
flow_model_ckpt=None,
flow_frames=None,
random_input=False,
use_flash_attention=False,
additional_decoder_for_transition=False,
additional_decoder_for_x3_hat=False,
clumping_factor=None,
return_detectron_format=False,
out_feature='out_feature',
interp_noise=False,
legacy=True,
xla_flash=False,
learn_pos_embed=False,
**kwargs
):
super().__init__()
encoder_block_kwargs.update({'flash_attention': use_flash_attention})
decoder_block_kwargs.update({'flash_attention': use_flash_attention})
self.clumping_factor = clumping_factor
self.interp_noise = interp_noise
self.learn_pos_embed = learn_pos_embed
if self.clumping_factor is not None:
print('Clumping factor = %d' % self.clumping_factor)
self.clumping_embed = nn.Conv3d(in_channels=decoder_embed_dim, out_channels=decoder_embed_dim,
kernel_size=(1, clumping_factor, clumping_factor),
stride=(1, clumping_factor, clumping_factor))
self.clumping_embed.apply(self._init_weights)
self.up = nn.ConvTranspose2d(decoder_embed_dim, decoder_embed_dim, kernel_size=2, stride=2)
self.up.apply(self._init_weights)
self.encoder = encoder_func(
img_size=img_size,
patch_size=patch_size,
in_chans=encoder_in_chans,
num_classes=encoder_num_classes,
embed_dim=encoder_embed_dim,
depth=encoder_depth,
num_heads=encoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
tubelet_size=tubelet_size,
num_frames=num_frames,
embed_per_frame=embed_per_frame,
block_func=encoder_block_func,
block_kwargs=encoder_block_kwargs,
clumping_factor=clumping_factor,
k_bias=k_bias,
interp_noise = interp_noise,
legacy=legacy,
xla_flash=xla_flash,
learn_pos_embed=learn_pos_embed,
**kwargs)
if not return_detectron_format:
self.decoder = PretrainVisionTransformerDecoder(
patch_size=patch_size,
num_classes= 3*tubelet_size*(patch_size[0]*patch_size[1]) if decoder_num_classes is None else decoder_num_classes,
embed_dim=decoder_embed_dim,
depth=decoder_depth,
num_heads=decoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
block_func=decoder_block_func,
k_bias=k_bias, xla_flash=xla_flash,
block_kwargs=decoder_block_kwargs, legacy=legacy)
self.encoder_to_decoder = nn.Linear(encoder_embed_dim, decoder_embed_dim, bias=k_bias)
if not self.interp_noise:
self.mask_token = nn.Parameter(torch.zeros(1, 1, encoder_embed_dim))
trunc_normal_(self.mask_token, std=.02)
else:
self.mask_token = None
self.timestamps = None
self.encoder.timestamps = None
if self.learn_pos_embed:
self.pos_embed = nn.Parameter(get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim))
else:
self.pos_embed = get_sinusoid_encoding_table(self.encoder.num_patches, decoder_embed_dim)
self.num_frames = num_frames
self.num_patches = self.encoder.num_patches
if self.num_frames is not None:
self.num_patches_per_frame = self.num_patches // self.num_frames
else:
self.num_patches_per_frame = self.num_patches
self.patch_size = self.encoder.patch_size
if isinstance(img_size, int):
self.image_size = (img_size, img_size)
else:
assert hasattr(img_size, '__len__'), img_size
self.image_size = img_size
self.return_detectron_format = return_detectron_format
@property
def mask_size(self):
return (self.num_frames // self.patch_size[0],
self.image_size[-2] // self.patch_size[-2],
self.image_size[-1] // self.patch_size[-1])
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'mask_token'}
def unpatchify(self, x, mask):
# Define the input tensor
B, N, C = x.shape # batch size
h, w = self.mask_size[-2:]
patch_size = self.patch_size[-2:]
recon = torch.zeros(B, h*w, C).to(x)
recon[mask[:, -h*w:]] = x.flatten(0, 1)
rec_imgs = rearrange(recon, 'b n (p c) -> b n p c', c=3)
# Notice: To visualize the reconstruction video, we add the predict and the original mean and var of each patch.
rec_imgs = rearrange(rec_imgs,
'b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)',
p0=1,
p1=patch_size[0],
p2=patch_size[1],
h=h,
w=w)
# MEAN = torch.from_numpy(np.array((0.485, 0.456, 0.406))[None, :, None, None, None]).cuda().half()
# STD = torch.from_numpy(np.array((0.229, 0.224, 0.225))[None, :, None, None, None]).cuda().half()
#
# rec_imgs = (rec_imgs - MEAN) / STD
return rec_imgs
def forward(self, x, mask, timestamps=None, return_feat_layer=None, res=1, *args, get_encoder_out=False, **kwargs):
_, _, T, _, _ = x.shape
self.device = x.device
enc_out = self.encoder(x, mask, self.mask_token, timestamps=timestamps, return_feat_layer=return_feat_layer, res=res, *args, **kwargs) # [B, N_vis, C_e]
x_vis = self.encoder_to_decoder(enc_out)
# check if we are returning the features of an intermediate block layer
if return_feat_layer is not None:
# if the returned layer is one of the encoder layers (the first N_enc layers) we return the features
# if the return feat layer is exactly N_enc then we are returning the layer after the entire encoder block
# in both cases this manifests as returning x_vis, since self.encoder will return either the final block embedding
# or the final head embedding depending on the return_feat_layer
# in either case we subtract the number of encoder blocks + 1 (for the intermediate embedding layer)
# from the return_feat_layer to get the correct index for the decoder block
return_feat_layer = return_feat_layer - len(self.encoder.blocks) - 1
if return_feat_layer < 0:
return x_vis
# add pos embedding
if res != 1:
p0 = self.patch_size[-2]
p1 = self.patch_size[-1]
pos_embed = interpolate_pos_encoding(self.pos_embed, T, int(256 // p0 * res), int(256 // p1 * res))
else:
pos_embed = self.pos_embed
dec_pos_embed = pos_embed.expand(x_vis.size(0), -1, -1).type_as(x)
if not self.learn_pos_embed:
dec_pos_embed = dec_pos_embed.to(x.device).clone().detach()
x_vis = x_vis + dec_pos_embed
# pass input through the decoder, this will automatically return an intermediate layer if return_feat_layer is set
x_all = self.decoder(x_vis, 0, return_feat_layer=return_feat_layer)
if get_encoder_out:
return x_all, enc_out
return x_all
def get_counterfactual(self, x, move_patches):
'''
:param x: input tensor [1, C, T, H, W]: support only batch size 1 for now
:param move_patches: torch tensor [N, 4] sized array where each row contains patch motion [x1, y1, x2, y2] in pixel coordinates
:return:
'''
B, _, T, H, H = x.shape
mask = torch.ones(B, self.encoder.hw * self.encoder.num_frames).to(x.device).bool()
mask[:, :self.encoder.hw * (self.encoder.num_frames - 1)] = False
move_patches = (move_patches / H) * self.encoder.h
move_patches = move_patches.to(torch.int64)
for x1, y1, x2, y2 in move_patches:
idx2 = x2 * self.encoder.w + y2 + (self.encoder.num_frames - 1) * (self.encoder.h * self.encoder.w)
mask[:, idx2] = False
im_x1 = x1 * self.encoder.ph
im_y1 = y1 * self.encoder.pw
im_x2 = x2 * self.encoder.ph
im_y2 = y2 * self.encoder.pw
x[:, :, -1, im_x2:im_x2 + self.encoder.ph, im_y2:im_y2 + self.encoder.pw] = x[:, :, -2,
im_x1:im_x1 + self.encoder.ph,
im_y1:im_y1 + self.encoder.pw]
prediction = self.forward(x, mask)[:, -self.encoder.hw:]
prediction = utils.unpatchify_cwm(
prediction,
patch_size=self.encoder.patch_size[-1],
) # reshape the output to an image
return prediction
def pretrain_vit_base_256_scaffold(**kwargs):
model = PretrainVisionTransformer(
img_size=256,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_num_classes=0,
decoder_embed_dim=768,
decoder_num_heads=12,
decoder_depth=12,
mlp_ratio=4,
qkv_bias=True,
k_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs)
model.default_cfg = _cfg()
return model
|