File size: 6,204 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import json
import glob
import torch
import datetime
import argparse
import torch.nn.functional as F
import numpy as np
import pycocotools.mask as mask_util
def create_image_info(image_id, file_name, image_size,
date_captured=datetime.datetime.utcnow().isoformat(' '),
license_id=1, coco_url="", flickr_url=""):
"""Return image_info in COCO style
Args:
image_id: the image ID
file_name: the file name of each image
image_size: image size in the format of (width, height)
date_captured: the date this image info is created
license: license of this image
coco_url: url to COCO images if there is any
flickr_url: url to flickr if there is any
"""
image_info = {
"id": image_id,
"file_name": file_name,
"width": image_size[0],
"height": image_size[1],
"date_captured": date_captured,
"license": license_id,
"coco_url": coco_url,
"flickr_url": flickr_url
}
return image_info
def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
image_size=None, bounding_box=None):
"""Return annotation info in COCO style
Args:
annotation_id: the annotation ID
image_id: the image ID
category_info: the information on categories
binary_mask: a 2D binary numpy array where '1's represent the object
file_name: the file name of each image
image_size: image size in the format of (width, height)
bounding_box: the bounding box for detection task. If bounding_box is not provided,
we will generate one according to the binary mask.
"""
upper = np.max(binary_mask)
lower = np.min(binary_mask)
thresh = upper / 2.0
binary_mask[binary_mask > thresh] = upper
binary_mask[binary_mask <= thresh] = lower
if image_size is not None:
binary_mask = resize_binary_mask(binary_mask.astype(np.uint8), image_size)
binary_mask_encoded = mask_util.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
area = mask_util.area(binary_mask_encoded)
if area < 1:
return None
if bounding_box is None:
bounding_box = mask_util.toBbox(binary_mask_encoded)
rle = mask_util.encode(np.array(binary_mask[...,None], order="F", dtype="uint8"))[0]
rle['counts'] = rle['counts'].decode('ascii')
segmentation = rle
annotation_info = {
"id": annotation_id,
"image_id": image_id,
"category_id": category_info["id"],
"iscrowd": 0,
"area": area.tolist(),
"bbox": bounding_box.tolist(),
"segmentation": segmentation,
"width": binary_mask.shape[1],
"height": binary_mask.shape[0],
}
return annotation_info
# necessay info used for coco style annotations
INFO = {
"description": "ImageNet-1K: pseudo-masks with MaskCut",
"url": "https://github.com/facebookresearch/CutLER",
"version": "1.0",
"year": 2023,
"contributor": "Xudong Wang",
"date_created": datetime.datetime.utcnow().isoformat(' ')
}
LICENSES = [
{
"id": 1,
"name": "Apache License",
"url": "https://github.com/facebookresearch/CutLER/blob/main/LICENSE"
}
]
# only one class, i.e. foreground
CATEGORIES = [
{
'id': 1,
'name': 'fg',
'supercategory': 'fg',
},
]
convert = lambda text: int(text) if text.isdigit() else text.lower()
natrual_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ]
output = {
"info": INFO,
"licenses": LICENSES,
"categories": CATEGORIES,
"images": [],
"annotations": []}
category_info = {
"is_crowd": 0,
"id": 1
}
if __name__ == "__main__":
parser = argparse.ArgumentParser('Merge pytorch results file into json')
parser.add_argument('--base-dir', type=str,
default='annotations/',
help='Dir to the generated annotation .pt files with CWM')
parser.add_argument('--save-path', type=str, default="coco_train_fixsize480_N3.json",
help='Path to save the merged annotation file')
args = parser.parse_args()
file_list = glob.glob(os.path.join(args.base_dir, '*', '*'))
ann_file = '/ccn2/u/honglinc/datasets/coco/annotations/instances_train2017.json'
with open(ann_file, 'r') as file:
gt_json = json.load(file)
image_id, segmentation_id = 1, 1
image_names = []
for file_name in file_list:
print('processing file name', file_name)
data = torch.load(file_name)
for img_name, mask_list in data.items():
for img in gt_json['images']:
if img['file_name'] == img_name:
height = img['height']
width = img['width']
break
flag = img_name not in image_names
if flag:
image_info = create_image_info(
image_id, img_name, (height, width, 3))
output["images"].append(image_info)
image_names.append(img_name)
for mask in mask_list:
# create coco-style annotation info
if mask.sum() == 0:
continue
pseudo_mask = F.interpolate(mask.float(), size=(height, width), mode='bicubic') > 0.5
pseudo_mask = pseudo_mask[0,0].numpy()
annotation_info = create_annotation_info(
segmentation_id, image_id, category_info, pseudo_mask.astype(np.uint8), None)
if annotation_info is not None:
output["annotations"].append(annotation_info)
segmentation_id += 1
if flag:
image_id += 1
print(image_id, segmentation_id)
# save annotations
with open(args.save_path, 'w') as output_json_file:
json.dump(output, output_json_file)
print(f'dumping {args.save_path}')
print("Done: {} images; {} anns.".format(len(output['images']), len(output['annotations'])))
|