File size: 14,280 Bytes
89022d9 6dfcb0f 8aafeea 6dfcb0f 4d601e2 6dfcb0f 8e8833a 6dfcb0f 7ea6ce9 6dfcb0f 8e8833a 89022d9 110d56f 89022d9 6dfcb0f 5637cf2 6dfcb0f 8e8833a 6dfcb0f 5637cf2 6dfcb0f 8e8833a 6dfcb0f 19af009 8e8833a 6dfcb0f 4d601e2 2d342bf 4d601e2 6dfcb0f 4d601e2 6dfcb0f 8e8833a 6dfcb0f 4d601e2 6dfcb0f 8e8833a 6dfcb0f 8e8833a 6dfcb0f 4d601e2 6dfcb0f 4d601e2 6dfcb0f 8e8833a 6dfcb0f 8e8833a 6dfcb0f 8e8833a 6dfcb0f a45652e 89022d9 6dfcb0f 8e8833a 6dfcb0f 8e8833a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import spaces
import cv2
import numpy as np
import gradio as gr
import cwm.utils as utils
import os
os.system("pip uninstall -y gradio")
os.system("pip install gradio==4.31.0")
# Points color and arrow properties
arrow_color = (0, 255, 0) # Green color for all arrows
dot_color = (0, 255, 0) # Green color for the dots at start and end
dot_color_fixed = (255, 0, 0) # Red color for zero-length vectors
thickness = 3 # Thickness of the arrow
tip_length = 0.3 # The length of the arrow tip relative to the arrow length
dot_radius = 7 # Radius for the dots
dot_thickness = -1 # Thickness for solid circle (-1 fills the circle)
from PIL import Image
import torch
import json
#load model
from cwm.model.model_factory import model_factory
from timm.data.constants import (IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load CWM 3-frame model (automatically download pre-trained checkpoint)
model = model_factory.load_model('vitb_8x8patch_2frames_encoder_mask_token')#.to(device)
model.requires_grad_(False)
model.eval()
model = model#.to(torch.float16)
import matplotlib.pyplot as plt
from matplotlib.patches import FancyArrowPatch
from PIL import Image
import numpy as np
from torchvision import transforms
def draw_arrows_matplotlib(img, selected_points, zero_length):
"""
Draw arrows on the image using matplotlib for better quality arrows and dots.
"""
fig, ax = plt.subplots()
ax.imshow(img)
for i in range(0, len(selected_points), 2):
start_point = selected_points[i]
end_point = selected_points[i + 1]
if start_point == end_point or zero_length:
# Draw a dot for zero-length vectors or if only one point is clicked
ax.scatter(start_point[0], start_point[1], color='red', s=100) # Red dot for zero-length vector
else:
# Draw arrows
arrow = FancyArrowPatch((start_point[0], start_point[1]), (end_point[0], end_point[1]),
color='green', linewidth=2, arrowstyle='->', mutation_scale=15)
ax.add_patch(arrow)
# Optionally, draw a small circle (dot) at the start and end points
ax.scatter(start_point[0], start_point[1], color='green', s=100) # Green dot at start
ax.scatter(end_point[0], end_point[1], color='green', s=100) # Green dot at end
# Save the image to a numpy array
fig.canvas.draw()
img_array = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img_array = img_array.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return img_array
import os
# def load_preuploaded_images():
# image_folder = "assets"
# images = []
# for img_file in os.listdir(image_folder):
# img_path = os.path.join(image_folder, img_file)
# if img_file.endswith(('png', 'jpg', 'jpeg')):
# images.append(Image.open(img_path))
# return images
#
# # Function to transfer image from gallery to the input image section
#
# preloaded_images = load_preuploaded_images()
#
# print("Preloaded images:", preloaded_images)
# @spaces.GPU(duration=110)
def get_c(x, points):
x = utils.imagenet_normalize(x)#.to(device)
with torch.no_grad():
counterfactual = model.get_counterfactual(x, points)
return counterfactual
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown('''# Scene editing interventions with Counterfactual World Models!
''')
# Annotating arrows on an image
with gr.Tab(label='Image'):
with gr.Row():
with gr.Column():
# Input image
original_image = gr.State(value=None) # store original image without arrows
original_image_high_res = gr.State(value=None) # store original image without arrows
input_image = gr.Image(type="numpy", label="Upload Image")
# Annotate arrows
selected_points = gr.State([]) # store points
zero_length_toggle = gr.Checkbox(label="Select patches to be kept fixed", value=False) # Toggle for zero-length vectors
with gr.Row():
gr.Markdown('1. **Click on the image** to specify patch motion by selecting a start and end point. \n 2. After selecting the points to move, enable the **"Select patches to be kept fixed"** checkbox to choose a few points to keep fixed. \n 3. **Click "Run Model"** to visualize the result of the edit.')
undo_button = gr.Button('Undo last action')
clear_button = gr.Button('Clear All')
# Run model button
run_model_button = gr.Button('Run Model')
# Show the image with the annotated arrows
with gr.Tab(label='Intervention'):
output_image = gr.Image(type='numpy')
# Store the original image and resize to square size once uploaded
def resize_to_square(img, size=512):
print("Resizing image to square")
img = Image.fromarray(img)
transform = transforms.Compose([
transforms.Resize((size, size)),
# transforms.CenterCrop(size)
])
img = transform(img) # .transpose(1, 2, 0)
return np.array(img)
def load_img(evt: gr.SelectData):
img_path = evt.value['image']['path']
img = np.array(Image.open(img_path))
# print(f"Image uploaded with shape: {input.shape}")
with open('./assets/intervention_test_images/annot.json', 'r') as f:
points_json = json.load(f)
resized_img = resize_to_square(img)
if os.path.basename(img_path) not in points_json:
return resized_img, resized_img, img, []
points_json = points_json[os.path.basename(img_path)]
# print(f"Image uploaded with shape: {input.shape}")
temp = resized_img.copy()
# Redraw all remaining arrows and dots
for i in range(0, len(points_json), 2):
start_point = points_json[i]
end_point = points_json[i + 1]
if start_point == end_point:
# Zero-length vector: Draw a dot
color = dot_color_fixed
else:
cv2.arrowedLine(temp, start_point, end_point, arrow_color, thickness, tipLength=tip_length,
line_type=cv2.LINE_AA)
color = arrow_color
# Draw arrow
# Draw dots at start and end points
cv2.circle(temp, start_point, dot_radius, color, dot_thickness, lineType=cv2.LINE_AA)
cv2.circle(temp, end_point, dot_radius, color, dot_thickness, lineType=cv2.LINE_AA)
# If there is an odd number of points (e.g., only a start point), draw a dot for it
if len(points_json) == 1:
start_point = points_json[0]
cv2.circle(temp, start_point, dot_radius, dot_color, dot_thickness, lineType=cv2.LINE_AA)
return temp, resized_img, img, points_json
def store_img(img):
resized_img = resize_to_square(img) # Resize the uploaded image to a square
print(f"Image uploaded with shape: {resized_img.shape}")
return resized_img, resized_img, img, []
with gr.Row():
with gr.Column():
gallery = gr.Gallery( ["./assets/ducks.jpg", "./assets/robot_arm.jpg", "./assets/bread.jpg", "./assets/bird.jpg", "./assets/desk_1.jpg", "./assets/glasses.jpg", "./assets/watering_pot.jpg"], columns=5, allow_preview=False, label="Select an example image to test")
# examples = gr.Examples(
# examples=[
# ["./assets/desk_1.jpg", "./assets/desk_1.jpg"],
# ],
# inputs=[input_image, original_image],
# # fn=load_img,
# # outputs=[input_image, original_image],
# # cache_examples=True,
# # run_on_click=True,
# # label="Select an example image to test"
# )
gallery.select(load_img, outputs=[input_image, original_image, original_image_high_res, selected_points])
input_image.upload(store_img, [input_image], [input_image, original_image, original_image_high_res, selected_points])
# Get points and draw arrows or zero-length vectors based on the toggle
def get_point(img, sel_pix, zero_length, evt: gr.SelectData):
sel_pix.append(evt.index) # Append the point's location (coordinates)
# Zero-length vector case: Draw a single dot at the clicked point
if zero_length:
point = sel_pix[-1] # Last point clicked
cv2.circle(img, point, dot_radius, dot_color_fixed, dot_thickness, lineType=cv2.LINE_AA) # Draw a dot at the point
sel_pix.append(evt.index)
else:
# Regular case: two clicks for an arrow
# Check if this is the first point (start point for the arrow)
if len(sel_pix) % 2 == 1:
# Draw a dot at the start point to give feedback
start_point = sel_pix[-1] # Last point is the start
cv2.circle(img, start_point, dot_radius, dot_color, dot_thickness, lineType=cv2.LINE_AA)
# Check if two points have been selected (start and end points for an arrow)
if len(sel_pix) % 2 == 0:
# Draw an arrow between the last two points
start_point = sel_pix[-2] # Second last point is the start
end_point = sel_pix[-1] # Last point is the end
# Draw arrow
cv2.arrowedLine(img, start_point, end_point, arrow_color, thickness, tipLength=tip_length, line_type=cv2.LINE_AA)
# Draw a dot at the end point
cv2.circle(img, end_point, dot_radius, dot_color, dot_thickness, lineType=cv2.LINE_AA)
return img if isinstance(img, np.ndarray) else np.array(img)
input_image.select(get_point, [input_image, selected_points, zero_length_toggle], [input_image])
# Undo the last selected action
def undo_arrows(orig_img, sel_pix, zero_length):
temp = orig_img.copy()
# if zero_length:
# # Undo the last zero-length vector (just the last dot)
# if len(sel_pix) >= 1:
# sel_pix.pop() # Remove the last point
# else:
if len(sel_pix) >= 2:
sel_pix.pop() # Remove the last end point
sel_pix.pop() # Remove the last start point
# Redraw all remaining arrows and dots
for i in range(0, len(sel_pix), 2):
start_point = sel_pix[i]
end_point = sel_pix[i + 1]
if start_point == end_point:
# Zero-length vector: Draw a dot
color = dot_color_fixed
else:
cv2.arrowedLine(temp, start_point, end_point, arrow_color, thickness, tipLength=tip_length)
color = arrow_color
# Draw arrow
# Draw dots at start and end points
cv2.circle(temp, start_point, dot_radius, color, dot_thickness, lineType=cv2.LINE_AA)
cv2.circle(temp, end_point, dot_radius, color, dot_thickness, lineType=cv2.LINE_AA)
# If there is an odd number of points (e.g., only a start point), draw a dot for it
if len(sel_pix) == 1:
start_point = sel_pix[0]
cv2.circle(temp, start_point, dot_radius, dot_color, dot_thickness, lineType=cv2.LINE_AA)
return temp if isinstance(temp, np.ndarray) else np.array(temp)
undo_button.click(undo_arrows, [original_image, selected_points, zero_length_toggle], [input_image])
# Clear all points and reset the image
def clear_all_points(orig_img, sel_pix):
sel_pix.clear() # Clear all points
return orig_img # Reset image to original
clear_button.click(clear_all_points, [original_image, selected_points], [input_image])
# Dummy model function to simulate running a model
def run_model_on_points(points, input_image, original_image):
H = input_image.shape[0]
W = input_image.shape[1]
factor = 256/H
# Example: pretend the model processes points and returns a simple transformation on the image
points = torch.from_numpy(np.array(points).reshape(-1, 4)) * factor
points = points[:, [1, 0, 3, 2]]
img = Image.fromarray(original_image)
transform = transforms.Compose([
transforms.Resize((256, 256)),
# transforms.CenterCrop(256)
])
img = np.array(transform(img))
# np.save("img.npy", original_image)
img = torch.from_numpy(img).permute(2, 0, 1).float() / 255.0
img = img[None]
# reshape image to [B, C, T, H, W], C = 3, T = 3 (3-frame model), H = W = 224
x = img[:, :, None].expand(-1, -1, 2, -1, -1)#.to(torch.float16)
# Imagenet-normalize the inputs (standardization)
counterfactual = get_c(x, points)
counterfactual = counterfactual.squeeze()
counterfactual = counterfactual.clamp(0, 1).permute(1,2,0).detach().cpu().numpy()
# for i in range(0, len(points), 2):
# # Draw rectangles on the points as model output example
# cv2.rectangle(processed_image, points[i], points[i + 1], (255, 0, 0), 3)
return counterfactual
# Run model when the button is clicked
run_model_button.click(run_model_on_points, [selected_points, input_image, original_image_high_res], [output_image])
# Launch the app
demo.queue().launch(inbrowser=True, share=True)
|