File size: 17,928 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import os
import decord
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
class VideoMAE(torch.utils.data.Dataset):
"""Load your own video classification dataset.
Parameters
----------
root : str, required.
Path to the root folder storing the dataset.
setting : str, required.
A text file describing the dataset, each line per video sample.
There are three items in each line: (1) video path; (2) video length and (3) video label.
train : bool, default True.
Whether to load the training or validation set.
test_mode : bool, default False.
Whether to perform evaluation on the test set.
Usually there is three-crop or ten-crop evaluation strategy involved.
name_pattern : str, default None.
The naming pattern of the decoded video frames.
For example, img_00012.jpg.
video_ext : str, default 'mp4'.
If video_loader is set to True, please specify the video format accordinly.
is_color : bool, default True.
Whether the loaded image is color or grayscale.
modality : str, default 'rgb'.
Input modalities, we support only rgb video frames for now.
Will add support for rgb difference image and optical flow image later.
num_segments : int, default 1.
Number of segments to evenly divide the video into clips.
A useful technique to obtain global video-level information.
Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016.
num_crop : int, default 1.
Number of crops for each image. default is 1.
Common choices are three crops and ten crops during evaluation.
new_length : int, default 1.
The length of input video clip. Default is a single image, but it can be multiple video frames.
For example, new_length=16 means we will extract a video clip of consecutive 16 frames.
new_step : int, default 1.
Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames.
new_step=2 means we will extract a video clip of every other frame.
temporal_jitter : bool, default False.
Whether to temporally jitter if new_step > 1.
video_loader : bool, default False.
Whether to use video loader to load data.
use_decord : bool, default True.
Whether to use Decord video loader to load data. Otherwise use mmcv video loader.
transform : function, default None.
A function that takes data and label and transforms them.
data_aug : str, default 'v1'.
Different types of data augmentation auto. Supports v1, v2, v3 and v4.
lazy_init : bool, default False.
If set to True, build a dataset instance without loading any dataset.
"""
def __init__(self,
root,
setting,
train=True,
test_mode=False,
name_pattern='img_%05d.jpg',
video_ext='mp4',
is_color=True,
modality='rgb',
num_segments=1,
num_crop=1,
new_length=1,
new_step=1,
randomize_interframes=False,
transform=None,
temporal_jitter=False,
video_loader=False,
use_decord=False,
lazy_init=False,
is_video_dataset=True):
super(VideoMAE, self).__init__()
self.root = root
self.setting = setting
self.train = train
self.test_mode = test_mode
self.is_color = is_color
self.modality = modality
self.num_segments = num_segments
self.num_crop = num_crop
self.new_length = new_length
self.randomize_interframes = randomize_interframes
self._new_step = new_step # If randomize_interframes is True, then this is the max, otherwise it's just the skip
# self._skip_length = self.new_length * self.new_step # If randomize_interframes is True, then this isn't used, otherwise it's used as calculated
self.temporal_jitter = temporal_jitter
self.name_pattern = name_pattern
self.video_loader = video_loader
self.video_ext = video_ext
self.use_decord = use_decord
self.transform = transform
self.lazy_init = lazy_init
if (not self.lazy_init) and is_video_dataset:
self.clips = self._make_dataset(root, setting)
if len(self.clips) == 0:
raise (RuntimeError("Found 0 video clips in subfolders of: " + root + "\n"
"Check your data directory (opt.data-dir)."))
def __getitem__(self, index):
directory, target = self.clips[index]
if self.video_loader:
if '.' in directory.split('/')[-1]:
# data in the "setting" file already have extension, e.g., demo.mp4
video_name = directory
else:
# data in the "setting" file do not have extension, e.g., demo
# So we need to provide extension (i.e., .mp4) to complete the file name.
video_name = '{}.{}'.format(directory, self.video_ext)
try:
decord_vr = decord.VideoReader(video_name, num_threads=1)
except:
# return video_name
return (self.__getitem__(index + 1))
duration = len(decord_vr)
segment_indices, skip_offsets, new_step, skip_length = self._sample_train_indices(duration)
images = self._video_TSN_decord_batch_loader(directory, decord_vr, duration, segment_indices, skip_offsets,
new_step, skip_length)
process_data, mask = self.transform((images, None)) # T*C,H,W
process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose(0,
1) # T*C,H,W -> T,C,H,W -> C,T,H,W
return (process_data, mask)
def __len__(self):
return len(self.clips)
def _make_dataset(self, directory, setting):
if not os.path.exists(setting):
raise (RuntimeError("Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting)))
clips = []
with open(setting) as split_f:
data = split_f.readlines()
for line in data:
line_info = line.split(' ')
# line format: video_path, video_duration, video_label
if len(line_info) < 2:
raise (RuntimeError('Video input format is not correct, missing one or more element. %s' % line))
elif len(line_info) > 2:
line_info = (' '.join(line_info[:-1]), line_info[-1]) # filename has spaces
clip_path = os.path.join(line_info[0])
target = int(line_info[1])
item = (clip_path, target)
clips.append(item)
# import torch_xla.core.xla_model as xm
# print = xm.master_print
# print("Dataset created. Number of clips: ", len(clips))
return clips
def _sample_train_indices(self, num_frames):
if self.randomize_interframes is False:
new_step = self._new_step
else:
new_step = np.random.randint(1, self._new_step + 1)
skip_length = self.new_length * new_step
average_duration = (num_frames - skip_length + 1) // self.num_segments
if average_duration > 0:
offsets = np.multiply(list(range(self.num_segments)),
average_duration)
offsets = offsets + np.random.randint(average_duration,
size=self.num_segments)
elif num_frames > max(self.num_segments, skip_length):
offsets = np.sort(np.random.randint(
num_frames - skip_length + 1,
size=self.num_segments))
else:
offsets = np.zeros((self.num_segments,))
if self.temporal_jitter:
skip_offsets = np.random.randint(
new_step, size=skip_length // new_step)
else:
skip_offsets = np.zeros(
skip_length // new_step, dtype=int)
return offsets + 1, skip_offsets, new_step, skip_length
def _video_TSN_decord_batch_loader(self, directory, video_reader, duration, indices, skip_offsets, new_step,
skip_length):
sampled_list = []
frame_id_list = []
for seg_ind in indices:
offset = int(seg_ind)
for i, _ in enumerate(range(0, skip_length, new_step)):
if offset + skip_offsets[i] <= duration:
frame_id = offset + skip_offsets[i] - 1
else:
frame_id = offset - 1
frame_id_list.append(frame_id)
if offset + new_step < duration:
offset += new_step
try:
video_data = video_reader.get_batch(frame_id_list).asnumpy()
sampled_list = [Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in
enumerate(frame_id_list)]
except:
raise RuntimeError(
'Error occured in reading frames {} from video {} of duration {}.'.format(frame_id_list, directory,
duration))
return sampled_list
class ContextAndTargetVideoDataset(VideoMAE):
"""
A video dataset whose provided videos consist of (1) a "context" sequence of length Tc
and (2) a "target" sequence Tt.
These two sequences have the same frame rate (specificiable in real units) but are
separated by a specified gap (which may vary for different examples.)
The main use case is for training models to predict ahead by some variable amount,
given the context.
"""
standard_fps = [12, 24, 30, 48, 60, 100]
def __init__(self,
root,
setting,
train=True,
test_mode=False,
transform=None,
step_units='ms',
new_step=150,
start_frame=0,
context_length=2,
target_length=1,
channels_first=True,
generate_masks=True,
mask_generator=None,
context_target_gap=[400, 600],
normalize_timestamps=True,
default_fps=30,
min_fps=0.1,
seed=0,
*args,
**kwargs):
super(ContextAndTargetVideoDataset, self).__init__(
root=root,
setting=setting,
train=train,
test_mode=test_mode,
transform=transform,
new_length=context_length,
use_decord=True,
lazy_init=False,
video_loader=True,
*args, **kwargs)
# breakpoint()
self.context_length = self.new_length
self.target_length = target_length
## convert from fps and step size to frames
self._fps = None
self._min_fps = min_fps
self._default_fps = default_fps
self._step_units = step_units
self.new_step = new_step
## sampling for train and test
self._start_frame = start_frame
self.gap = context_target_gap
self.seed = seed
self.rng = np.random.RandomState(seed=seed)
# breakpoint()
## output formatting
self._channels_first = channels_first
self._normalize_timestamps = normalize_timestamps
self._generate_masks = generate_masks
self.mask_generator = mask_generator
def _get_frames_per_t(self, t):
if self._step_units == 'frames' or (self._step_units is None):
return int(t)
assert self._fps is not None
t_per_frame = 1 / self._fps
if self._step_units in ['ms', 'milliseconds']:
t_per_frame *= 1000.0
return max(int(np.round(t / t_per_frame)), 1)
@property
def new_step(self):
if self._fps is None:
return None
else:
return self._get_frames_per_t(self._new_step)
@new_step.setter
def new_step(self, v):
self._new_step = v
@property
def gap(self):
if self._fps is None:
return [1, 2]
else:
gap = [self._get_frames_per_t(self._gap[0]),
self._get_frames_per_t(self._gap[1])]
gap[1] = max(gap[1], gap[0] + 1)
return gap
@gap.setter
def gap(self, v):
if v is None:
v = self._new_step
if not isinstance(v, (list, tuple)):
v = [v, v]
self._gap = v
def _get_video_name(self, directory):
if ''.join(['.', self.video_ext]) in directory.split('/')[-1]:
# data in the "setting" file has extension, e.g. demo.mpr
video_name = directory
else:
# data doesn't have an extension
video_name = '{}.{}'.format(directory, self.video_ext)
return video_name
def _set_fps(self, reader):
"""click fps to a standard"""
if self._step_units == 'frames' or self._step_units is None:
self._fps = None
else:
self._fps = None
fps = reader.get_avg_fps()
for st in self.standard_fps:
if (int(np.floor(fps)) == st) or (int(np.ceil(fps)) == st):
self._fps = st
if self._fps is None:
self._fps = int(np.round(fps))
if self._fps < self._min_fps:
self._fps = self._default_fps
def _get_step_and_gap(self):
step = self.new_step
if self.randomize_interframes and self.train:
step = self.rng.randint(1, step + 1)
if self.train:
gap = self.rng.randint(*self.gap)
else:
gap = sum(self.gap) // 2
return (step, gap)
def _sample_frames(self):
step, gap = self._get_step_and_gap()
## compute total length of sample
## e.g. if context_length = 2, step = 1, gap = 10, target_length = 2:
## total_length = 2 * 1 + 10 + (2 - 1) * 1 = 13
## so len(video) must be >= 13
self._total_length = self.context_length * step + gap + (self.target_length - 1) * step
if self._total_length > (self._num_frames - self._start_frame):
if self.train:
return None
else:
raise ValueError(
"movie of length %d starting at fr=%d is too long for video of %d frames" % \
(self._total_length, self._start_frame, self._num_frames))
## sample the frames randomly (if training) or from the start frame (if test)
if self.train:
self.start_frame_now = self.rng.randint(
min(self._start_frame, self._num_frames - self._total_length),
self._num_frames - self._total_length + 1)
else:
self.start_frame_now = min(self._start_frame, self._num_frames - self._total_length)
frames = [self.start_frame_now + i * step for i in range(self.context_length)]
frames += [frames[-1] + gap + i * step for i in range(self.target_length)]
# breakpoint()
return frames
def _decode_frame_images(self, reader, frames):
try:
video_data = reader.get_batch(frames).asnumpy()
video_data = [Image.fromarray(video_data[t, :, :, :]).convert('RGB')
for t, _ in enumerate(frames)]
except:
raise RuntimeError(
"Error occurred in reading frames {} from video {} of duration {}".format(
frames, self.index, self._num_frames))
return video_data
def __getitem__(self, index):
self.index = index
self.directory, target = self.clips[index]
self.video_name = self._get_video_name(self.directory)
## build decord loader
try:
decord_vr = decord.VideoReader(self.video_name, num_threads=1)
self._set_fps(decord_vr)
except:
# return self.video_name
return (self.__getitem__(index + 1))
## sample the video
self._num_frames = len(decord_vr)
self.frames = self._sample_frames()
if self.frames is None:
print("no movie of length %d for video idx=%d" % (self._total_length, self.index))
return self.__getitem__(index + 1)
## decode to PIL.Image
image_list = self._decode_frame_images(decord_vr, self.frames)
## postproc to torch.Tensor and mask generation
if self.transform is None:
image_tensor = torch.stack([transforms.ToTensor()(img) for img in image_list], 0)
else:
image_tensor = self.transform((image_list, None))
image_tensor = image_tensor.view(self.context_length + self.target_length, 3, *image_tensor.shape[-2:])
## VMAE expects [B,C,T,H,W] rather than [B,T,C,H,W]
if self._channels_first:
image_tensor = image_tensor.transpose(0, 1)
if self._generate_masks and self.mask_generator is not None:
mask = self.mask_generator()
return image_tensor, mask.bool()
else:
return image_tensor
|