File size: 22,122 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import random
import math
import numpy as np
import torch
import torch.nn.functional as F
from . import losses as bblosses
import kornia
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def compute_optical_flow(embedding_tensor, mask_tensor, frame_size):
# Unroll the mask tensor and find the indices of the masked and unmasked values in the second frame
mask_unrolled = mask_tensor.view(-1)
second_frame_unmask_indices = torch.where(mask_unrolled[frame_size ** 2:] == False)[0]
# Divide the embedding tensor into two parts: corresponding to the first and the second frame
first_frame_embeddings = embedding_tensor[0, :frame_size ** 2, :]
second_frame_embeddings = embedding_tensor[0, frame_size ** 2:, :]
# print(first_frame_embeddings.shape, second_frame_embeddings.shape, embedding_tensor.shape)
# Compute the cosine similarity between the unmasked embeddings from the second frame and the embeddings from the first frame
dot_product = torch.matmul(second_frame_embeddings, first_frame_embeddings.T)
norms = torch.norm(second_frame_embeddings, dim=1)[:, None] * torch.norm(first_frame_embeddings, dim=1)[None, :]
cos_sim_matrix = dot_product / norms
# Find the indices of pixels in the first frame that are most similar to each unmasked pixel in the second frame
first_frame_most_similar_indices = cos_sim_matrix.argmax(dim=-1)
# Convert the 1D pixel indices into 2D coordinates
second_frame_y = second_frame_unmask_indices // frame_size
second_frame_x = second_frame_unmask_indices % frame_size
first_frame_y = first_frame_most_similar_indices // frame_size
first_frame_x = first_frame_most_similar_indices % frame_size
# Compute the x and y displacements and convert them to float
displacements_x = (second_frame_x - first_frame_x).float()
displacements_y = (second_frame_y - first_frame_y).float()
# Initialize optical flow tensor
optical_flow = torch.zeros((2, frame_size, frame_size), device=embedding_tensor.device)
# Assign the computed displacements to the corresponding pixels in the optical flow tensor
optical_flow[0, second_frame_y, second_frame_x] = displacements_x
optical_flow[1, second_frame_y, second_frame_x] = displacements_y
return optical_flow
def get_minimal_224_crops_new_batched(video_tensor, N):
B, T, C, H, W = video_tensor.shape
# Calculate the number of crops needed in both the height and width dimensions
num_crops_h = math.ceil(H / 224) if H > 224 else 1
num_crops_w = math.ceil(W / 224) if W > 224 else 1
# Calculate the step size for the height and width dimensions
step_size_h = 0 if H <= 224 else max(0, (H - 224) // (num_crops_h - 1))
step_size_w = 0 if W <= 224 else max(0, (W - 224) // (num_crops_w - 1))
# Create a list to store the cropped tensors and their start positions
cropped_tensors = []
crop_positions = []
# Iterate over the height and width dimensions, extract the 224x224 crops, and append to the cropped_tensors list
for i in range(num_crops_h):
for j in range(num_crops_w):
start_h = i * step_size_h
start_w = j * step_size_w
end_h = min(start_h + 224, H)
end_w = min(start_w + 224, W)
crop = video_tensor[:, :, :, start_h:end_h, start_w:end_w]
cropped_tensors.append(crop)
crop_positions.append((start_h, start_w))
D = len(cropped_tensors)
# If N is greater than D, generate additional random crops
if N > D and H > 224 and W > 224: # check if H and W are greater than 224
for _ in range(N - D):
start_h = random.randint(0, H - 224)
start_w = random.randint(0, W - 224)
crop = video_tensor[:, :, :, start_h:(start_h + 224), start_w:(start_w + 224)]
cropped_tensors.append(crop)
crop_positions.append((start_h, start_w))
# Reshape the cropped tensors to fit the required output shape (B, T, C, 224, 224)
cropped_tensors = [crop.reshape(B, T, C, 224, 224) for crop in cropped_tensors]
return cropped_tensors, crop_positions
def create_weighted_mask_batched(h, w):
y_mask = np.linspace(0, 1, h)
y_mask = np.minimum(y_mask, 1 - y_mask)
x_mask = np.linspace(0, 1, w)
x_mask = np.minimum(x_mask, 1 - x_mask)
weighted_mask = np.outer(y_mask, x_mask)
return torch.from_numpy(weighted_mask).float()
def reconstruct_video_new_2_batched(cropped_tensors, crop_positions, original_shape):
B, T, C, H, W = original_shape
# Initialize an empty tensor to store the reconstructed video
reconstructed_video = torch.zeros((B, T, C, H, W)).to(cropped_tensors[0].device)
# Create a tensor to store the sum of weighted masks
weighted_masks_sum = torch.zeros((B, T, C, H, W)).to(cropped_tensors[0].device)
# Create a weighted mask for the crops
weighted_mask = create_weighted_mask_batched(224, 224).to(cropped_tensors[0].device)
weighted_mask = weighted_mask[None, None, None, :, :] # Extend dimensions to match the cropped tensor.
for idx, crop in enumerate(cropped_tensors):
start_h, start_w = crop_positions[idx]
# Multiply the crop with the weighted mask
weighted_crop = crop * weighted_mask
# Add the weighted crop to the corresponding location in the reconstructed_video tensor
reconstructed_video[:, :, :, start_h:(start_h + 224), start_w:(start_w + 224)] += weighted_crop
# Update the weighted_masks_sum tensor
weighted_masks_sum[:, :, :, start_h:(start_h + 224), start_w:(start_w + 224)] += weighted_mask
# Add a small epsilon value to avoid division by zero
epsilon = 1e-8
# Normalize the reconstructed video by dividing each pixel by its corresponding weighted_masks_sum value plus epsilon
reconstructed_video /= (weighted_masks_sum + epsilon)
return reconstructed_video
def l2_norm(x):
return x.square().sum(-3, True).sqrt()
resize = lambda x, a: F.interpolate(x, [int(a * x.shape[-2]), int(a * x.shape[-1])], mode='bilinear',
align_corners=False)
upsample = lambda x, H, W: F.interpolate(x, [int(H), int(W)], mode='bilinear', align_corners=False)
def get_occ_masks(flow_fwd, flow_bck, occ_thresh=0.5):
fwd_bck_cycle, _ = bblosses.backward_warp(img2=flow_bck, flow=flow_fwd)
flow_diff_fwd = flow_fwd + fwd_bck_cycle
bck_fwd_cycle, _ = bblosses.backward_warp(img2=flow_fwd, flow=flow_bck)
flow_diff_bck = flow_bck + bck_fwd_cycle
norm_fwd = l2_norm(flow_fwd) ** 2 + l2_norm(fwd_bck_cycle) ** 2
norm_bck = l2_norm(flow_bck) ** 2 + l2_norm(bck_fwd_cycle) ** 2
occ_thresh_fwd = occ_thresh * norm_fwd + 0.5
occ_thresh_bck = occ_thresh * norm_bck + 0.5
occ_mask_fwd = 1 - (l2_norm(flow_diff_fwd) ** 2 > occ_thresh_fwd).float()
occ_mask_bck = 1 - (l2_norm(flow_diff_bck) ** 2 > occ_thresh_bck).float()
return occ_mask_fwd, occ_mask_bck
def forward_backward_cycle_consistency(flow_fwd, flow_bck, niters=10):
# Make sure to be using axes-swapped, upsampled flows!
bck_flow_clone = flow_bck.clone().detach()
fwd_flow_clone = flow_fwd.clone().detach()
for i in range(niters):
fwd_bck_cycle_orig, _ = bblosses.backward_warp(img2=bck_flow_clone, flow=fwd_flow_clone)
flow_diff_fwd_orig = fwd_flow_clone + fwd_bck_cycle_orig
fwd_flow_clone = fwd_flow_clone - flow_diff_fwd_orig/2
bck_fwd_cycle_orig, _ = bblosses.backward_warp(img2=fwd_flow_clone, flow=bck_flow_clone)
flow_diff_bck_orig = bck_flow_clone + bck_fwd_cycle_orig
bck_flow_clone = bck_flow_clone - flow_diff_bck_orig/2
return fwd_flow_clone, bck_flow_clone
from PIL import Image
def resize_flow_map(flow_map, target_size):
"""
Resize a flow map to a target size while adjusting the flow vectors.
Parameters:
flow_map (numpy.ndarray): Input flow map of shape (H, W, 2) where each pixel contains a (dx, dy) flow vector.
target_size (tuple): Target size (height, width) for the resized flow map.
Returns:
numpy.ndarray: Resized and scaled flow map of shape (target_size[0], target_size[1], 2).
"""
# Get the original size
flow_map = flow_map[0].detach().cpu().numpy()
flow_map = flow_map.transpose(1, 2, 0)
original_size = flow_map.shape[:2]
# Separate the flow map into two channels: dx and dy
flow_map_x = flow_map[:, :, 0]
flow_map_y = flow_map[:, :, 1]
# Convert each flow channel to a PIL image for resizing
flow_map_x_img = Image.fromarray(flow_map_x)
flow_map_y_img = Image.fromarray(flow_map_y)
# Resize both channels to the target size using bilinear interpolation
flow_map_x_resized = flow_map_x_img.resize(target_size, Image.BILINEAR)
flow_map_y_resized = flow_map_y_img.resize(target_size, Image.BILINEAR)
# Convert resized PIL images back to NumPy arrays
flow_map_x_resized = np.array(flow_map_x_resized)
flow_map_y_resized = np.array(flow_map_y_resized)
# Compute the scaling factor based on the size change
scale_factor = target_size[0] / original_size[0] # Scaling factor for both dx and dy
# Scale the flow vectors (dx and dy) accordingly
flow_map_x_resized *= scale_factor
flow_map_y_resized *= scale_factor
# Recombine the two channels into a resized flow map
flow_map_resized = np.stack([flow_map_x_resized, flow_map_y_resized], axis=-1)
flow_map_resized = torch.from_numpy(flow_map_resized)[None].permute(0, 3, 1, 2)
return flow_map_resized
def get_vmae_optical_flow_crop_batched_smoothed(generator,
mask_generator,
img1,
img2,
neg_back_flow=True,
num_scales=1,
min_scale=400,
N_mask_samples=100,
mask_ratio=0.8,
smoothing_factor=1):
##### DEPRECATED
print('Deprecated. Please use scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed')
return scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed(generator,
mask_generator,
img1,
img2,
neg_back_flow=neg_back_flow,
num_scales=num_scales,
min_scale=min_scale,
N_mask_samples=N_mask_samples,
mask_ratio=mask_ratio,
smoothing_factor=smoothing_factor)
def average_crops(tensor, D):
C, H, W = tensor.shape
# Create zero-filled tensors for the shifted crops
down_shifted = torch.zeros_like(tensor)
up_shifted = torch.zeros_like(tensor)
right_shifted = torch.zeros_like(tensor)
left_shifted = torch.zeros_like(tensor)
# Shift the tensor and store the results in the zero-filled tensors
down_shifted[:, :H-D, :] = tensor[:, D:, :]
up_shifted[:, D:, :] = tensor[:, :H-D, :]
right_shifted[:, :, :W-D] = tensor[:, :, D:]
left_shifted[:, :, D:] = tensor[:, :, :W-D]
# Average the tensor with its four crops
result = (tensor + down_shifted + up_shifted + right_shifted + left_shifted) / 5.0
return result
def scaling_fixed_get_vmae_optical_flow_crop_batched_smoothed(predictor,
mask_generator,
img1,
img2,
conditioning_img=None,
num_scales=1,
min_scale=400,
N_mask_samples=100,
smoothing_factor=1):
B = img1.shape[0]
assert len(img1.shape) == 4
assert num_scales >= 1
# For scaling
h1 = img2.shape[-2]
w1 = img2.shape[-1]
alpha = (min_scale / img1.shape[-2]) ** (1 / (num_scales - 1)) if num_scales > 1 else 1
frame_size = 224 // predictor.patch_size[-1]
patch_size = predictor.patch_size[-1]
num_frames = predictor.num_frames
all_fwd_flows_e2d = []
s_hs = []
s_ws = []
for aidx in range(num_scales):
# print(aidx)
# print('aidx: ', aidx)
img1_scaled = F.interpolate(img1.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
mode='bicubic', align_corners=True)
img2_scaled = F.interpolate(img2.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
mode='bicubic', align_corners=True)
if conditioning_img is not None:
conditioning_img_scaled = F.interpolate(conditioning_img.clone(), [int((alpha ** aidx) * h1), int((alpha ** aidx) * w1)],
mode='bilinear', align_corners=False)
# print("img1_scaled", img1_scaled.shape, alpha, min_scale, num_scales)
h2 = img2_scaled.shape[-2]
w2 = img2_scaled.shape[-1]
s_h = h1 / h2
s_w = w1 / w2
s_hs.append(s_h)
s_ws.append(s_w)
if conditioning_img is not None:
video = torch.cat([conditioning_img_scaled.unsqueeze(1), img2_scaled.unsqueeze(1), img1_scaled.unsqueeze(1)], 1)
else:
video = torch.cat([img2_scaled.unsqueeze(1)]*(num_frames-1) + [img1_scaled.unsqueeze(1)], 1)
# Should work, even if the incoming video is already 224x224
crops1, c_pos1 = get_minimal_224_crops_new_batched(video, 1)
num_crops = len(crops1)
crop_flows_enc = []
crop_flows_enc2dec = []
N_samples = N_mask_samples
crop = torch.cat(crops1, 0).cuda()
optical_flows_enc2dec = torch.zeros(B * num_crops, 2, frame_size, frame_size).cuda()
mask_counts = torch.zeros(frame_size, frame_size).cuda()
i = 0
while i < N_samples or (mask_counts == 0).any().item():
if i % 100 == 0:
pass # print(i)
# This would be that every sample has the same mask. For now that's okay I think
mask = mask_generator().bool().cuda()
mask_2f = ~mask[0, (frame_size * frame_size)*(num_frames-1):]
mask_counts += mask_2f.reshape(frame_size, frame_size)
with torch.cuda.amp.autocast(enabled=True):
processed_x = crop.transpose(1, 2)
encoder_out = predictor.encoder(processed_x.to(torch.float16), mask.repeat(B * num_crops, 1))
encoder_to_decoder = predictor.encoder_to_decoder(encoder_out)
encoder_to_decoder = encoder_to_decoder[:, (frame_size * frame_size)*(num_frames-2):, :]
flow_mask = mask[:, (frame_size * frame_size)*(num_frames-2):]
optical_flow_e2d = []
# one per batch element for now
for b in range(B * num_crops):
batch_flow = compute_optical_flow(encoder_to_decoder[b].unsqueeze(0), flow_mask, frame_size)
# optical_flow_e2d.append(batch_flow.unsqueeze(0))
optical_flow_e2d.append(average_crops(batch_flow, smoothing_factor).unsqueeze(0))
optical_flow_e2d = torch.cat(optical_flow_e2d, 0)
optical_flows_enc2dec += optical_flow_e2d
i += 1
optical_flows_enc2dec = optical_flows_enc2dec / mask_counts
#other fucntion
# scale_factor_y = video.shape[-2] / 224
# scale_factor_x = video.shape[-1] / 224
#
# scaled_optical_flow = torch.zeros_like(optical_flows_enc2dec)
# scaled_optical_flow[:, 0, :, :] = optical_flows_enc2dec[:, 0, :, :] * scale_factor_x * s_w
# scaled_optical_flow[:, 1, :, :] = optical_flows_enc2dec[:, 1, :, :] * scale_factor_y * s_h
#
# # split the crops back up
# crop_flows_enc2dec = scaled_optical_flow.split(B, 0)
###
#Kevin's fn
crop_flows_enc2dec = optical_flows_enc2dec.split(B, 0)
###
#Changed by Kevin
T1 = [F.interpolate(_, [int(224), int(224)], mode='bicubic', align_corners=True).unsqueeze(1).cpu() for _ in
crop_flows_enc2dec]
optical_flows_enc2dec_joined = reconstruct_video_new_2_batched(T1, c_pos1, (
B, 1, 2, video.shape[-2], video.shape[-1])).squeeze(1)
#other function
# optical_flows_enc2dec_joined = reconstruct_video_new_2_batched(
# [_.unsqueeze(1).repeat_interleave(patch_size, -1).repeat_interleave(patch_size, -2).cpu() for _ in
# crop_flows_enc2dec], c_pos1, (B, 1, 2, video.shape[-2], video.shape[-1])).squeeze(1)
#
all_fwd_flows_e2d.append(optical_flows_enc2dec_joined)
#other function
# all_fwd_flows_e2d_new = []
#
# for r in all_fwd_flows_e2d:
# new_r = upsample(r, all_fwd_flows_e2d[0].shape[-2], all_fwd_flows_e2d[0].shape[-1])
# all_fwd_flows_e2d_new.append(new_r.unsqueeze(-1))
# return_flow = torch.cat(all_fwd_flows_e2d_new, -1).mean(-1)
#
#
# return_flow = -return_flow
# all_fwd_flows_e2d_new = [-_ for _ in all_fwd_flows_e2d_new]
#
# return return_flow, all_fwd_flows_e2d_new
#Kevin's method
all_fwd_flows_e2d_new = []
for ridx, r in enumerate(all_fwd_flows_e2d):
# print('ridx', ridx)
# print('sh', s_hs[ridx])
# print('sw', s_ws[ridx])
# print('scale_fac y', scale_ys[ridx])
# print('scale_fac x', scale_xs[ridx])
_sh = s_hs[ridx]
_sw = s_ws[ridx]
_sfy = predictor.patch_size[-1]
_sfx = predictor.patch_size[-1]
# plt.figure(figsize=(20, 20))
# plt.subplot(1,3,1)
# plt.imshow(f2rgb(-r).cpu().numpy()[0].transpose(1,2,0))
# plt.subplot(1,3,2)
new_r = F.interpolate(r, [int(all_fwd_flows_e2d[0].shape[-2]), int(all_fwd_flows_e2d[0].shape[-1])], mode='bicubic', align_corners=True)
# plt.imshow(f2rgb(-new_r).cpu().numpy()[0].transpose(1,2,0))
scaled_new_r = torch.zeros_like(new_r)
scaled_new_r[:, 0, :, :] = new_r[:, 0, :, :] * _sfx * _sw
scaled_new_r[:, 1, :, :] = new_r[:, 1, :, :] * _sfy * _sh
# plt.subplot(1,3,3)
# plt.imshow(f2rgb(-scaled_new_r).cpu().numpy()[0].transpose(1,2,0))
# plt.show()
all_fwd_flows_e2d_new.append(scaled_new_r.unsqueeze(-1))
return_flow = torch.cat(all_fwd_flows_e2d_new, -1).mean(-1)
return_flow = -return_flow
all_fwd_flows_e2d_new = [-_ for _ in all_fwd_flows_e2d_new]
return return_flow , all_fwd_flows_e2d_new
def extract_jacobians_and_flows(img1, img2,
flow_generator,
mask,
target_mask=None):
IMAGE_SIZE = img1.shape[-2:]
y = torch.cat([img2.unsqueeze(1), img1.unsqueeze(1)], 1)
jacobians, flows, _ = flow_generator(y, mask, target_mask)
# swap x,y flow dims
flows = torch.cat([flows[0, 1].unsqueeze(0), flows[0, 0].unsqueeze(0)])
# upsample to 224
flows = flows.unsqueeze(0).repeat_interleave(IMAGE_SIZE[0] // flows.shape[-1], -1).repeat_interleave(
IMAGE_SIZE[0] // flows.shape[-1], -2)
return jacobians, flows
import matplotlib.pyplot as plt
class FlowToRgb(object):
def __init__(self, max_speed=1.0, from_image_coordinates=True, from_sampling_grid=False):
self.max_speed = max_speed
self.from_image_coordinates = from_image_coordinates
self.from_sampling_grid = from_sampling_grid
def __call__(self, flow):
assert flow.size(-3) == 2, flow.shape
if self.from_sampling_grid:
flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
flow_y = -flow_y
elif not self.from_image_coordinates:
flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
else:
flow_h, flow_w = torch.split(flow, [1,1], dim=-3)
flow_x, flow_y = [flow_w, -flow_h]
# print("flow_x", flow_x[0, :, 0, 0], flow_y[0, :, 0, 0])
angle = torch.atan2(flow_y, flow_x) # in radians from -pi to pi
speed = torch.sqrt(flow_x**2 + flow_y**2) / self.max_speed
# print("angle", angle[0, :, 0, 0] * 180 / np.pi)
hue = torch.fmod(angle, torch.tensor(2 * np.pi))
sat = torch.ones_like(hue)
val = speed
hsv = torch.cat([hue, sat, val], -3)
rgb = kornia.color.hsv_to_rgb(hsv)
return rgb
def make_colorwheel(self):
"""
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255 * np.arange(0, RY) / RY)
col += RY
# YG
colorwheel[col:col + YG, 0] = 255 - np.floor(255 * np.arange(0, YG) / YG)
colorwheel[col:col + YG, 1] = 255
col += YG
# GC
colorwheel[col:col + GC, 1] = 255
colorwheel[col:col + GC, 2] = np.floor(255 * np.arange(0, GC) / GC)
col += GC
# CB
colorwheel[col:col + CB, 1] = 255 - np.floor(255 * np.arange(0, CB) / CB)
colorwheel[col:col + CB, 2] = 255
col += CB
# BM
colorwheel[col:col + BM, 2] = 255
colorwheel[col:col + BM, 0] = np.floor(255 * np.arange(0, BM) / BM)
col += BM
# MR
colorwheel[col:col + MR, 2] = 255 - np.floor(255 * np.arange(0, MR) / MR)
colorwheel[col:col + MR, 0] = 255
return colorwheel |