File size: 20,943 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import kornia
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn
import cwm.eval.Flow.masking_flow as masking
def boltzmann(x, beta=1, eps=1e-9):
if beta is None:
return x
x = torch.exp(x * beta)
return x / x.amax((-1,-2), keepdim=True).clamp(min=eps)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def imagenet_normalize(x, temporal_dim=1):
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(x.device)[None,None,:,None,None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(x.device)[None,None,:,None,None].to(x)
if temporal_dim == 2:
mean = mean.transpose(1,2)
std = std.transpose(1,2)
return (x - mean) / std
def imagenet_unnormalize(x, temporal_dim=2):
device = x.device
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x)
if temporal_dim == 2:
mean = mean.transpose(1,2)
std = std.transpose(1,2)
x = x*std + mean
return x
def coordinate_ims(batch_size, seq_length, imsize, normalize=True, dtype_out=torch.float32):
static = False
if seq_length == 0:
static = True
seq_length = 1
B = batch_size
T = seq_length
H,W = imsize
ones = torch.ones([B,H,W,1], dtype=dtype_out)
if normalize:
h = torch.divide(torch.arange(H).to(ones), torch.tensor(H-1, dtype=dtype_out))
h = 2.0 * ((h.view(1, H, 1, 1) * ones) - 0.5)
w = torch.divide(torch.arange(W).to(ones), torch.tensor(W-1, dtype=dtype_out))
w = 2.0 * ((w.view(1, 1, W, 1) * ones) - 0.5)
else:
h = torch.arange(H).to(ones).view(1,H,1,1) * ones
w = torch.arange(W).to(ones).view(1,1,W,1) * ones
h = torch.stack([h]*T, 1)
w = torch.stack([w]*T, 1)
hw_ims = torch.cat([h,w], -1)
if static:
hw_ims = hw_ims[:,0]
return hw_ims
def get_distribution_centroid(dist, eps=1e-9, normalize=False):
B,T,C,H,W = dist.shape
assert C == 1
dist_sum = dist.sum((-2, -1), keepdim=True).clamp(min=eps)
dist = dist / dist_sum
grid = coordinate_ims(B, T, [H,W], normalize=normalize).to(dist.device)
grid = grid.permute(0,1,4,2,3)
centroid = (grid * dist).sum((-2,-1))
return centroid
class FlowToRgb(object):
def __init__(self, max_speed=1.0, from_image_coordinates=True, from_sampling_grid=False):
self.max_speed = max_speed
self.from_image_coordinates = from_image_coordinates
self.from_sampling_grid = from_sampling_grid
def __call__(self, flow):
assert flow.size(-3) == 2, flow.shape
if self.from_sampling_grid:
flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
flow_y = -flow_y
elif not self.from_image_coordinates:
flow_x, flow_y = torch.split(flow, [1, 1], dim=-3)
else:
flow_h, flow_w = torch.split(flow, [1,1], dim=-3)
flow_x, flow_y = [flow_w, -flow_h]
angle = torch.atan2(flow_y, flow_x) # in radians from -pi to pi
speed = torch.sqrt(flow_x**2 + flow_y**2) / self.max_speed
hue = torch.fmod(angle, torch.tensor(2 * np.pi))
sat = torch.ones_like(hue)
val = speed
hsv = torch.cat([hue, sat, val], -3)
rgb = kornia.color.hsv_to_rgb(hsv)
return rgb
class Patchify(nn.Module):
"""Convert a set of images or a movie into patch vectors"""
def __init__(self,
patch_size=(16, 16),
temporal_dim=1,
squeeze_channel_dim=True
):
super().__init__()
self.set_patch_size(patch_size)
self.temporal_dim = temporal_dim
assert self.temporal_dim in [1, 2], self.temporal_dim
self._squeeze_channel_dim = squeeze_channel_dim
@property
def num_patches(self):
if (self.T is None) or (self.H is None) or (self.W is None):
return None
else:
return (self.T // self.pt) * (self.H // self.ph) * (self.W // self.pw)
def set_patch_size(self, patch_size):
self.patch_size = patch_size
if len(self.patch_size) == 2:
self.ph, self.pw = self.patch_size
self.pt = 1
self._patches_are_3d = False
elif len(self.patch_size) == 3:
self.pt, self.ph, self.pw = self.patch_size
self._patches_are_3d = True
else:
raise ValueError("patch_size must be a 2- or 3-tuple, but is %s" % self.patch_size)
self.shape_inp = self.rank_inp = self.H = self.W = self.T = None
self.D = self.C = self.E = self.embed_dim = None
def _check_shape(self, x):
self.shape_inp = x.shape
self.rank_inp = len(self.shape_inp)
self.H, self.W = self.shape_inp[-2:]
assert (self.H % self.ph) == 0 and (self.W % self.pw) == 0, (self.shape_inp, self.patch_size)
if (self.rank_inp == 5) and self._patches_are_3d:
self.T = self.shape_inp[self.temporal_dim]
assert (self.T % self.pt) == 0, (self.T, self.pt)
elif self.rank_inp == 5:
self.T = self.shape_inp[self.temporal_dim]
else:
self.T = 1
def split_by_time(self, x):
shape = x.shape
assert shape[1] % self.T == 0, (shape, self.T)
return x.view(shape[0], self.T, shape[1] // self.T, *shape[2:])
def merge_by_time(self, x):
shape = x.shape
return x.view(shape[0], shape[1] * shape[2], *shape[3:])
def video_to_patches(self, x):
if self.rank_inp == 4:
assert self.pt == 1, (self.pt, x.shape)
x = rearrange(x, 'b c (h ph) (w pw) -> b (h w) (ph pw) c', ph=self.ph, pw=self.pw)
else:
assert self.rank_inp == 5, (x.shape, self.rank_inp, self.shape_inp)
dim_order = 'b (t pt) c (h ph) (w pw)' if self.temporal_dim == 1 else 'b c (t pt) (h ph) (w pw)'
x = rearrange(x, dim_order + ' -> b (t h w) (pt ph pw) c', pt=self.pt, ph=self.ph, pw=self.pw)
self.N, self.D, self.C = x.shape[-3:]
self.embed_dim = self.E = self.D * self.C
return x
def patches_to_video(self, x):
shape = x.shape
rank = len(shape)
if rank == 4:
B, _N, _D, _C = shape
else:
assert rank == 3, rank
B, _N, _E = shape
assert (_E % self.D == 0), (_E, self.D)
x = x.view(B, _N, self.D, -1)
if _N < self.num_patches:
masked_patches = self.get_masked_patches(
x,
num_patches=(self.num_patches - _N),
mask_mode=self.mask_mode)
x = torch.cat([x, masked_patches], 1)
x = rearrange(
x,
'b (t h w) (pt ph pw) c -> b c (t pt) (h ph) (w pw)',
pt=self.pt, ph=self.ph, pw=self.pw,
t=(self.T // self.pt), h=(self.H // self.ph), w=(self.W // self.pw))
if self.rank_inp == 5 and (self.temporal_dim == 1):
x = x.transpose(1, 2)
elif self.rank_inp == 4:
assert x.shape[2] == 1, x.shape
x = x[:, :, 0]
return x
@staticmethod
def get_masked_patches(x, num_patches, mask_mode='zeros'):
shape = x.shape
patches_shape = (shape[0], num_patches, *shape[2:])
if mask_mode == 'zeros':
return torch.zeros(patches_shape).to(x.device).to(x.dtype).detach()
elif mask_mode == 'gray':
return 0.5 * torch.ones(patches_shape).to(x.device).to(x.dtype).detach()
else:
raise NotImplementedError("Haven't implemented mask_mode == %s" % mask_mode)
def average_within_patches(self, z):
if len(z.shape) == 3:
z = rearrange(z, 'b n (d c) -> b n d c', c=self.C)
return z.mean(-2, True).repeat(1, 1, z.shape[-2], 1)
def forward(self, x, to_video=False, mask_mode='zeros'):
if not to_video:
self._check_shape(x)
x = self.video_to_patches(x)
return x if not self._squeeze_channel_dim else x.view(x.size(0), self.N, -1)
else: # x are patches
assert (self.shape_inp is not None) and (self.num_patches is not None)
self.mask_mode = mask_mode
x = self.patches_to_video(x)
return x
class DerivativeFlowGenerator(nn.Module):
"""Estimate flow of a two-frame predictor using torch autograd"""
def __init__(self,
predictor,
perturbation_patch_size=None,
aggregation_patch_size=None,
agg_power=None,
agg_channel_func=None,
num_samples=1,
leave_one_out_sampling=False,
average_jacobian=True,
confidence_thresh=None,
temporal_dim=2,
imagenet_normalize_inputs=True):
super(DerivativeFlowGenerator, self).__init__()
self.predictor = predictor
self.patchify = Patchify(self.patch_size, temporal_dim=1, squeeze_channel_dim=True)
self.set_temporal_dim(temporal_dim)
self.imagenet_normalize_inputs = imagenet_normalize_inputs
self.perturbation_patch_size = self._get_patch_size(perturbation_patch_size) or self.patch_size
self.aggregation_patch_size = self._get_patch_size(aggregation_patch_size) or self.patch_size
self.agg_patchify = Patchify(self.aggregation_patch_size,
temporal_dim=1,
squeeze_channel_dim=False)
self.agg_channel_func = agg_channel_func or (lambda x: F.relu(x).sum(-3, True))
self.average_jacobian = average_jacobian
self.confidence_thresh = confidence_thresh
self.num_samples = num_samples
self.leave_one_out_sampling = leave_one_out_sampling
self.agg_power = agg_power
self.t_dim = temporal_dim
def _get_patch_size(self, p):
if p is None:
return None
elif isinstance(p, int):
return (1, p, p)
elif len(p) == 2:
return (1, p[0], p[1])
else:
assert len(p) == 3, p
return (p[0], p[1], p[2])
def set_temporal_dim(self, t_dim):
if t_dim == 1:
self.predictor.t_dim = 1
self.predictor.c_dim = 2
elif t_dim == 2:
self.predictor.c_dim = 1
self.predictor.t_dim = 2
else:
raise ValueError("temporal_dim must be 1 or 2")
@property
def c_dim(self):
if self.predictor is None:
return None
return self.predictor.c_dim
@property
def patch_size(self):
if self.predictor is None:
return None
elif hasattr(self.predictor, 'patch_size'):
return self.predictor.patch_size
elif hasattr(self.predictor.encoder.patch_embed, 'proj'):
return self.predictor.encoder.patch_embed.proj.kernel_size
else:
return None
@property
def S(self):
return self.num_samples
@property
def sequence_length(self):
if self.predictor is None:
return None
elif hasattr(self.predictor, 'sequence_length'):
return self.predictor.sequence_length
elif hasattr(self.predictor, 'num_frames'):
return self.predictor.num_frames
else:
return 2
@property
def mask_shape(self):
if self.predictor is None:
return None
elif hasattr(self.predictor, 'mask_shape'):
return self.predictor.mask_shape
assert self.patch_size is not None
pt, ph, pw = self.patch_size
return (self.sequence_length // pt,
self.inp_shape[-2] // ph,
self.inp_shape[-1] // pw)
@property
def perturbation_mask_shape(self):
return (
self.mask_shape[0],
self.inp_shape[-2] // self.perturbation_patch_size[-2],
self.inp_shape[-1] // self.perturbation_patch_size[-1]
)
@property
def p_mask_shape(self):
return self.perturbation_mask_shape
@property
def aggregation_mask_shape(self):
return (
1,
self.inp_shape[-2] // self.aggregation_patch_size[-2],
self.inp_shape[-1] // self.aggregation_patch_size[-1]
)
@property
def a_mask_shape(self):
return self.aggregation_mask_shape
def get_perturbation_input(self, x):
self.set_input(x)
y = torch.zeros((self.B, *self.p_mask_shape), dtype=x.dtype, device=x.device, requires_grad=True)
y = y.unsqueeze(2).repeat(1, 1, x.shape[2], 1, 1)
return y
def pred_patches_to_video(self, y, x, mask):
"""input at visible positions, preds at masked positions"""
B, C = y.shape[0], y.shape[-1]
self.patchify._check_shape(x)
self.patchify.D = np.prod(self.patch_size)
x = self.patchify(x)
y_out = torch.zeros_like(x)
x_vis = x[~mask]
y_out[~mask] = x_vis.view(-1, C)
try:
y_out[mask] = y.view(-1, C)
except:
y_out[mask] = y.reshape(-1, C)
return self.patchify(y_out, to_video=True)
def set_image_size(self, *args, **kwargs):
assert self.predictor is not None, "Can't set the image size without a predictor"
if hasattr(self.predictor, 'set_image_size'):
self.predictor.set_image_size(*args, **kwargs)
else:
self.predictor.image_size = args[0]
def predict(self, x=None, mask=None, forward_full=False):
if x is None:
x = self.x
if mask is None:
mask = self.generate_mask(x)
self.set_image_size(x.shape[-2:])
y = self.predictor(
self._preprocess(x),
mask if (x.size(0) == 1) else self.mask_rectangularizer(mask), forward_full=forward_full)
y = self.pred_patches_to_video(y, x, mask=mask)
frame = -1 % y.size(1)
y = y[:, frame:frame + 1]
return y
def _get_perturbation_func(self, x=None, mask=None):
if (x is not None):
self.set_input(x, mask)
def forward_mini_image(y):
y = y.repeat_interleave(self.perturbation_patch_size[-2], -2)
y = y.repeat_interleave(self.perturbation_patch_size[-1], -1)
x_pred = self.predict(self.x + y, self.mask)
x_pred = self.agg_patchify(x_pred).mean(-2).sum(-1).view(self.B, *self.a_mask_shape)
return x_pred[self.targets]
return forward_mini_image
def _postprocess_jacobian(self, jac):
_jac = torch.zeros((self.B, *self.a_mask_shape, *jac.shape[1:])).to(jac.device).to(jac.dtype)
_jac[self.targets] = jac
jac = self.agg_channel_func(_jac)
assert jac.size(-3) == 1, jac.shape
jac = jac.squeeze(-3)[..., 0, :, :] # derivative w.r.t. first frame and agg channels
jac = jac.view(self.B, self.a_mask_shape[-2], self.a_mask_shape[-1],
self.B, self.p_mask_shape[-2], self.p_mask_shape[-1])
bs = torch.arange(0, self.B).long().to(jac.device)
jac = jac[bs, :, :, bs, :, :] # take diagonal
return jac
def _confident_jacobian(self, jac):
if self.confidence_thresh is None:
return torch.ones_like(jac[:, None, ..., 0, 0])
conf = (jac.amax((-2, -1)) > self.confidence_thresh).float()[:, None]
return conf
def set_input(self, x, mask=None, timestamps=None):
shape = x.shape
if len(shape) == 4:
x = x.unsqueeze(1)
else:
assert len(shape) == 5, \
"Input must be a movie of shape [B,T,C,H,W]" + \
"or a single frame of shape [B,C,H,W]"
self.inp_shape = x.shape
self.x = x
self.B = self.inp_shape[0]
self.T = self.inp_shape[1]
self.C = self.inp_shape[2]
if mask is not None:
self.mask = mask
if timestamps is not None:
self.timestamps = timestamps
def _preprocess(self, x):
if self.imagenet_normalize_inputs:
x = imagenet_normalize(x)
if self.t_dim != 1:
x = x.transpose(self.t_dim, self.c_dim)
return x
def _jacobian_to_flows(self, jac):
if self.agg_power is None:
jac = (jac == jac.amax((-2, -1), True)).float()
else:
jac = torch.pow(jac, self.agg_power)
jac = jac.view(self.B * np.prod(self.a_mask_shape[-2:]), 1, 1, *self.p_mask_shape[-2:])
centroids = get_distribution_centroid(jac, normalize=False).view(
self.B, self.a_mask_shape[-2], self.a_mask_shape[-1], 2)
rescale = [self.a_mask_shape[-2] / self.p_mask_shape[-2],
self.a_mask_shape[-1] / self.p_mask_shape[-1]]
centroids = centroids * torch.tensor(rescale, device=centroids.device).view(1, 1, 1, 2)
flows = centroids - \
coordinate_ims(1, 0, self.a_mask_shape[-2:], normalize=False).to(jac.device)
flows = flows.permute(0, 3, 1, 2)
px_scale = torch.tensor(self.aggregation_patch_size[-2:]).float().to(flows.device).view(1, 2, 1, 1)
flows *= px_scale
return flows
def set_targets(self, targets=None, frame=-1):
frame = frame % self.mask_shape[0]
if targets is None:
targets = self.get_mask_image(self.mask)[:, frame:frame + 1]
else:
assert len(targets.shape) == 4, targets.shape
targets = targets[:, frame:frame + 1]
self.targets = ~masking.upsample_masks(~targets, self.a_mask_shape[-2:])
def _get_mask_partition(self, mask):
mask = self.get_mask_image(mask)
mask_list = masking.partition_masks(
mask[:, 1:], num_samples=self.S, leave_one_out=self.leave_one_out_sampling)
return [torch.cat([mask[:, 0:1].view(m.size(0), -1), m], -1)
for m in mask_list]
def _compute_jacobian(self, y):
perturbation_func = self._get_perturbation_func()
jac = torch.autograd.functional.jacobian(
perturbation_func,
y,
vectorize=False)
jac = self._postprocess_jacobian(jac)
return jac
def _upsample_mask(self, mask):
return masking.upsample_masks(
mask.view(mask.size(0), -1, *self.mask_shape[-2:]).float(), self.inp_shape[-2:])
def get_mask_image(self, mask, upsample=False, invert=False, shape=None):
if shape is None:
shape = self.mask_shape
mask = mask.view(-1, *shape)
if upsample:
mask = self._upsample_mask(mask)
if invert:
mask = 1 - mask
return mask
def forward(self, x, mask, targets=None):
self.set_input(x, mask)
y = self.get_perturbation_input(x)
mask_list = self._get_mask_partition(mask)
jacobian, flows, confident = [], [], []
for s, mask_sample in enumerate(mask_list):
self.set_input(x, mask_sample)
self.set_targets(targets)
import time
t1 = time.time()
jac = self._compute_jacobian(y)
conf_jac = masking.upsample_masks(self._confident_jacobian(jac), self.a_mask_shape[-2:])
jacobian.append(jac)
confident.append(conf_jac)
if not self.average_jacobian:
flow = self._jacobian_to_flows(jac) * self.targets * conf_jac * \
masking.upsample_masks(self.get_mask_image(self.mask)[:, 1:], self.a_mask_shape[-2:])
flows.append(flow)
t2 = time.time()
print(t2 - t1)
jacobian = torch.stack(jacobian, -1)
confident = torch.stack(confident, -1)
valid = torch.stack([masking.upsample_masks(
self.get_mask_image(m)[:, 1:], self.a_mask_shape[-2:]) for m in mask_list], -1)
valid = valid * confident
if self.average_jacobian:
_valid = valid[:, 0].unsqueeze(-2).unsqueeze(-2)
jac = (jacobian * _valid.float()).sum(-1) / _valid.float().sum(-1).clamp(min=1)
flows = self._jacobian_to_flows(jac) * \
masking.upsample_masks(_valid[:, None, ..., 0, 0, :].amax(-1).bool(), self.a_mask_shape[-2:])
if targets is not None:
self.set_targets(targets)
flows *= self.targets
else:
flows = torch.stack(flows, -1)
flows = flows.sum(-1) / valid.float().sum(-1).clamp(min=1)
valid = valid * (targets[:, -1:].unsqueeze(-1) if targets is not None else 1)
return (jacobian, flows, valid) |