File size: 13,422 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
def upsample_masks(masks, size, thresh=0.5):
shape = masks.shape
dtype = masks.dtype
h, w = shape[-2:]
H, W = size
if (H == h) and (W == w):
return masks
elif (H < h) and (W < w):
s = (h // H, w // W)
return masks[..., ::s[0], ::s[1]]
masks = masks.unsqueeze(-2).unsqueeze(-1)
masks = masks.repeat(*([1] * (len(shape) - 2)), 1, H // h, 1, W // w)
if ((H % h) == 0) and ((W % w) == 0):
masks = masks.view(*shape[:-2], H, W)
else:
_H = np.prod(masks.shape[-4:-2])
_W = np.prod(masks.shape[-2:])
masks = transforms.Resize(size)(masks.view(-1, 1, _H, _W)) > thresh
masks = masks.view(*shape[:2], H, W).to(masks.dtype)
return masks
def partition_masks(masks, num_samples=2, leave_one_out=False):
B = masks.shape[0]
S = num_samples
masks = masks.view(B, -1)
partitioned = [torch.ones_like(masks) for _ in range(S)]
for b in range(B):
vis_inds = torch.where(~masks[b])[0]
vis_inds = vis_inds[torch.randperm(vis_inds.size(0))]
if leave_one_out:
for s in range(S):
partitioned[s][b][vis_inds] = 0
partitioned[s][b][vis_inds[s::S]] = 1
else:
for s in range(S):
partitioned[s][b][vis_inds[s::S]] = 0
return partitioned
class RectangularizeMasks(nn.Module):
"""Make sure all masks in a batch have same number of 1s and 0s"""
def __init__(self, truncation_mode='min'):
super().__init__()
self._mode = truncation_mode
assert self._mode in ['min', 'max', 'mean', 'full', 'none', None], (self._mode)
def set_mode(self, mode):
self._mode = mode
def __call__(self, masks):
if self._mode in ['none', None]:
return masks
assert isinstance(masks, torch.Tensor), type(masks)
if self._mode == 'full':
return torch.ones_like(masks)
shape = masks.shape
masks = masks.flatten(1)
B, N = masks.shape
num_masked = masks.float().sum(-1)
M = {
'min': torch.amin, 'max': torch.amax, 'mean': torch.mean
}[self._mode](num_masked).long()
num_changes = num_masked.long() - M
for b in range(B):
nc = num_changes[b]
if nc > 0:
inds = torch.where(masks[b])[0]
inds = inds[torch.randperm(inds.size(0))[:nc].to(inds.device)]
masks[b, inds] = 0
elif nc < 0:
inds = torch.where(~masks[b])[0]
inds = inds[torch.randperm(inds.size(0))[:-nc].to(inds.device)]
masks[b, inds] = 1
if list(masks.shape) != list(shape):
masks = masks.view(*shape)
return masks
class UniformMaskingGenerator(object):
def __init__(self, input_size, mask_ratio, seed=None, clumping_factor=1, randomize_num_visible=False):
self.frames = None
if len(input_size) == 3:
self.frames, self.height, self.width = input_size
elif len(input_size) == 2:
self.height, self.width = input_size
elif len(input_size) == 1 or isinstance(input_size, int):
self.height = self.width = input_size
self.clumping_factor = clumping_factor
self.pad_h = self.height % self.c[0]
self.pad_w = self.width % self.c[1]
self.num_patches_per_frame = (self.height // self.c[0]) * (self.width // self.c[1])
self.mask_ratio = mask_ratio
self.rng = np.random.RandomState(seed=seed)
self.randomize_num_visible = randomize_num_visible
@property
def num_masks_per_frame(self):
if not hasattr(self, '_num_masks_per_frame'):
self._num_masks_per_frame = int(self.mask_ratio * self.num_patches_per_frame)
return self._num_masks_per_frame
@num_masks_per_frame.setter
def num_masks_per_frame(self, val):
self._num_masks_per_frame = val
self._mask_ratio = (val / self.num_patches_per_frame)
@property
def c(self):
if isinstance(self.clumping_factor, int):
return (self.clumping_factor, self.clumping_factor)
else:
return self.clumping_factor[:2]
@property
def mask_ratio(self):
return self._mask_ratio
@mask_ratio.setter
def mask_ratio(self, val):
self._mask_ratio = val
self._num_masks_per_frame = int(self._mask_ratio * self.num_patches_per_frame)
@property
def num_visible(self):
return self.num_patches_per_frame - self.num_masks_per_frame
@num_visible.setter
def num_visible(self, val):
self.num_masks_per_frame = self.num_patches_per_frame - val
def __repr__(self):
repr_str = "Mask: total patches per frame {}, mask patches per frame {}, mask ratio {}, random num num visible? {}".format(
self.num_patches_per_frame, self.num_masks_per_frame, self.mask_ratio, self.randomize_num_visible
)
return repr_str
def sample_mask_per_frame(self):
num_masks = self.num_masks_per_frame
if self.randomize_num_visible:
num_masks = self.rng.randint(low=num_masks, high=(self.num_patches_per_frame + 1))
mask = np.hstack([
np.zeros(self.num_patches_per_frame - num_masks),
np.ones(num_masks)])
self.rng.shuffle(mask)
if max(*self.c) > 1:
mask = mask.reshape(self.height // self.c[0],
1,
self.width // self.c[1],
1)
mask = np.tile(mask, (1, self.c[0], 1, self.c[1]))
mask = mask.reshape((self.height - self.pad_h, self.width - self.pad_w))
_pad_h = self.rng.choice(range(self.pad_h + 1))
pad_h = (self.pad_h - _pad_h, _pad_h)
_pad_w = self.rng.choice(range(self.pad_w + 1))
pad_w = (self.pad_w - _pad_w, _pad_w)
mask = np.pad(mask,
(pad_h, pad_w),
constant_values=1
).reshape((self.height, self.width))
return mask
def __call__(self, num_frames=None):
num_frames = (num_frames or self.frames) or 1
masks = np.stack([self.sample_mask_per_frame() for _ in range(num_frames)]).flatten()
return masks
class TubeMaskingGenerator(UniformMaskingGenerator):
def __call__(self, num_frames=None):
num_frames = (num_frames or self.frames) or 1
masks = np.tile(self.sample_mask_per_frame(), (num_frames, 1)).flatten()
return masks
class RotatedTableMaskingGenerator(TubeMaskingGenerator):
def __init__(self, tube_length=None, *args, **kwargs):
super(RotatedTableMaskingGenerator, self).__init__(*args, **kwargs)
self.tube_length = tube_length
def __call__(self, num_frames=None):
num_frames = (num_frames or self.frames) or 2
tube_length = self.tube_length or (num_frames - 1)
table_thickness = num_frames - tube_length
assert tube_length < num_frames, (tube_length, num_frames)
tubes = super().__call__(num_frames=tube_length)
top = np.zeros(table_thickness * self.height * self.width).astype(tubes.dtype).flatten()
masks = np.concatenate([top, tubes], 0)
return masks
class PytorchMaskGeneratorWrapper(nn.Module):
"""Pytorch wrapper for numpy masking generators"""
def __init__(self,
mask_generator=TubeMaskingGenerator,
*args, **kwargs):
super().__init__()
self.mask_generator = mask_generator(*args, **kwargs)
@property
def mask_ratio(self):
return self.mask_generator.mask_ratio
@mask_ratio.setter
def mask_ratio(self, value):
self.mask_generator.mask_ratio = value
def forward(self, device='cuda', dtype_out=torch.bool, **kwargs):
masks = self.mask_generator(**kwargs)
masks = torch.tensor(masks).to(device).to(dtype_out)
return masks
class MaskingGenerator(nn.Module):
"""Pytorch base class for masking generators"""
def __init__(self,
input_size,
mask_ratio,
seed=0,
visible_frames=0,
clumping_factor=1,
randomize_num_visible=False,
create_on_cpu=True,
always_batch=False):
super().__init__()
self.frames = None
if len(input_size) == 3:
self.frames, self.height, self.width = input_size
elif len(input_size) == 2:
self.height, self.width = input_size
elif len(input_size) == 1 or isinstance(input_size, int):
self.height = self.width = input_size
self.clumping_factor = clumping_factor
self.pad_h = self.height % self.c[0]
self.pad_w = self.width % self.c[1]
self.num_patches_per_frame = (self.height // self.c[0]) * (self.width // self.c[1])
self.mask_ratio = mask_ratio
self.visible_frames = visible_frames
self.always_batch = always_batch
self.create_on_cpu = create_on_cpu
self.rng = np.random.RandomState(seed=seed)
self._set_torch_seed(seed)
self.randomize_num_visible = randomize_num_visible
@property
def num_masks_per_frame(self):
if not hasattr(self, '_num_masks_per_frame'):
self._num_masks_per_frame = int(self.mask_ratio * self.num_patches_per_frame)
return self._num_masks_per_frame
@num_masks_per_frame.setter
def num_masks_per_frame(self, val):
self._num_masks_per_frame = val
self._mask_ratio = (val / self.num_patches_per_frame)
@property
def c(self):
if isinstance(self.clumping_factor, int):
return (self.clumping_factor,) * 2
else:
return self.clumping_factor[:2]
@property
def mask_ratio(self):
return self._mask_ratio
@mask_ratio.setter
def mask_ratio(self, val):
self._mask_ratio = val
self._num_masks_per_frame = int(self._mask_ratio * self.num_patches_per_frame)
@property
def num_visible(self):
return self.num_patches_per_frame - self.num_masks_per_frame
@num_visible.setter
def num_visible(self, val):
self.num_masks_per_frame = self.num_patches_per_frame - val
def _set_torch_seed(self, seed):
self.seed = seed
torch.manual_seed(self.seed)
def __repr__(self):
repr_str = ("Class: {}\nMask: total patches per mask {},\n" + \
"mask patches per mask {}, visible patches per mask {}, mask ratio {:0.3f}\n" + \
"randomize num visible? {}").format(
type(self).__name__, self.num_patches_per_frame,
self.num_masks_per_frame, self.num_visible, self.mask_ratio,
self.randomize_num_visible
)
return repr_str
def sample_mask_per_frame(self, *args, **kwargs):
num_masks = self.num_masks_per_frame
if self.randomize_num_visible:
num_masks = self.rng.randint(low=num_masks, high=(self.num_patches_per_frame + 1))
mask = torch.cat([
torch.zeros([self.num_patches_per_frame - num_masks]),
torch.ones([num_masks])], 0).bool()
inds = torch.randperm(mask.size(0)).long()
mask = mask[inds]
if max(*self.c) > 1:
mask = mask.view(self.height // self.c[0],
1,
self.width // self.c[1],
1)
mask = torch.tile(mask, (1, self.c[0], 1, self.c[1]))
mask = mask.reshape(self.height - self.pad_h, self.width - self.pad_w)
_pad_h = self.rng.choice(range(self.pad_h + 1))
pad_h = (self.pad_h - _pad_h, _pad_h)
_pad_w = self.rng.choice(range(self.pad_w + 1))
pad_w = (self.pad_w - _pad_w, _pad_w)
mask = F.pad(mask,
pad_w + pad_h,
mode='constant',
value=1)
mask = mask.reshape(self.height, self.width)
return mask
def forward(self, x=None, num_frames=None):
num_frames = (num_frames or self.frames) or 1
if isinstance(x, torch.Tensor):
batch_size = x.size(0)
masks = torch.stack([
torch.cat([self.sample_mask_per_frame() for _ in range(num_frames)], 0).flatten()
for b in range(batch_size)], 0)
if not self.create_on_cpu:
masks = masks.to(x.device)
if batch_size == 1 and not self.always_batch:
masks = masks.squeeze(0)
else:
batch_size = 1
masks = torch.cat([self.sample_mask_per_frame() for _ in range(num_frames)], 0).flatten()
if self.always_batch:
masks = masks[None]
if self.visible_frames > 0:
vis = torch.zeros((batch_size, 1, self.height, self.width), dtype=torch.bool)
vis = vis.view(masks.shape).to(masks.device)
masks = torch.cat(([vis] * self.visible_frames) + [masks], -1)
return masks
|