File size: 11,684 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import numpy as np
from physion_evaluator.feature_extract_interface import PhysionFeatureExtractor
from physion_evaluator.utils import DataAugmentationForVideoMAE
from torch.functional import F
from cwm.eval.Flow.flow_utils import get_occ_masks
from cwm.model.model_factory import model_factory
import torch
def load_predictor(
model_func_,
load_path_,
**kwargs):
predictor = model_func_(**kwargs).eval().requires_grad_(False)
did_load = predictor.load_state_dict(
torch.load(load_path_, map_location=torch.device("cpu"))['model'])
predictor._predictor_load_path = load_path_
print(did_load, load_path_)
return predictor
class CWM(PhysionFeatureExtractor):
def __init__(self, model_name, aggregate_embeddings=False):
super().__init__()
self.model = model_factory.load_model(model_name).cuda().half()
self.num_frames = self.model.num_frames
self.timestamps = np.arange(self.num_frames)
ps = (224 // self.model.patch_size[1]) ** 2
self.bool_masked_pos = np.zeros([ps * self.num_frames])
self.bool_masked_pos[ps * (self.num_frames - 1):] = 1
self.ps = ps
self.aggregate_embeddings = aggregate_embeddings
def transform(self):
return DataAugmentationForVideoMAE(
imagenet_normalize=True,
rescale_size=224,
), 150, 4
def fwd(self, videos):
bool_masked_pos = torch.tensor(self.bool_masked_pos).to(videos.device).unsqueeze(0).bool()
bool_masked_pos = torch.cat([bool_masked_pos] * videos.shape[0])
x_encoded = self.model(videos.half(), bool_masked_pos, forward_full=True,
return_features=True)
return x_encoded
def extract_features(self, videos, for_flow=False):
'''
videos: [B, T, C, H, W], T is usually 4 and videos are normalized with imagenet norm
returns: [B, T, D] extracted features
'''
videos = videos.transpose(1, 2)
all_features = []
# repeat the last frame of the video
videos = torch.cat([videos, videos[:, :, -1:]], dim=2)
for x in range(0, 4, self.num_frames - 1):
vid = videos[:, :, x:x + self.num_frames, :, :]
all_features.append(self.fwd(vid))
if self.aggregate_embeddings:
feats = all_features[-1].mean(dim=1, keepdim=True)
all_features[-1] = feats
# feats = feats.view(feats.shape[0], -1, self.model.num_patches_per_frame, feats.shape[-1])
# feats = feats.mean(dim=2)
# all_features[-1] = feats
x_encoded = torch.cat(all_features, dim=1)
return x_encoded
class CWM_Keypoints(PhysionFeatureExtractor):
def __init__(self, model_name):
super().__init__()
self.model = model_factory.load_model(model_name).cuda().half()
self.frames = [[0, 1, 2], [1, 2, 3]]
self.num_frames = self.model.num_frames
self.ps = (224 // self.model.patch_size[1]) ** 2
self.bool_masked_pos = np.zeros([self.ps * self.num_frames])
self.bool_masked_pos[self.ps * (self.num_frames - 1):] = 1
self.frame_gap = 150
self.num_frames_dataset = 4
self.res = 224
def transform(self):
return DataAugmentationForVideoMAE(
imagenet_normalize=True,
rescale_size=self.res,
), self.frame_gap, self.num_frames_dataset
def fwd(self, videos):
bool_masked_pos = torch.tensor(self.bool_masked_pos).to(videos.device).unsqueeze(0).bool()
bool_masked_pos = torch.cat([bool_masked_pos] * videos.shape[0])
_, x_encoded = self.model(videos.half(), bool_masked_pos, forward_full=True,
return_features=True)
return x_encoded
def extract_features(self, videos, segments=None):
'''
videos: [B, T, C, H, W], T is usually 4 and videos are normalized with imagenet norm
returns: [B, T, D] extracted features
'''
videos = videos.transpose(1, 2)
all_features = []
for x, arr in enumerate(self.frames):
#use the downsampled videos for keypoints
vid = videos[:, :, arr, :, :].half()
frame0 = vid[:, :, 0]
frame1 = vid[:, :, 1]
frame2 = vid[:, :, 2]
#extract features from the video frames frame0 and frame1 and include features at keypoint regions of frame2
mask, choices, err_array, k_feat, keypoint_recon = self.model.get_keypoints(frame0, frame1, frame2, 10, 1)
#reshape the features to [batch size, num_features]
k_feat = k_feat.view(k_feat.shape[0], -1)
all_features.append(k_feat)
x_encoded = torch.cat(all_features, dim=1)
return x_encoded
class CWM_KeypointsFlow(PhysionFeatureExtractor):
def __init__(self, model_name):
super().__init__()
self.model = model_factory.load_model(model_name).cuda().half()
self.frames = [[0, 3, 6], [3, 6, 9], [6, 9, 9]]
self.num_frames = self.model.num_frames
self.timestamps = np.arange(self.num_frames)
self.ps = (224 // self.model.patch_size[1]) ** 2
self.bool_masked_pos = np.zeros([self.ps * self.num_frames])
self.bool_masked_pos[self.ps * (self.num_frames - 1):] = 1
self.frame_gap = 50
self.num_frames_dataset = 9
self.res = 512
def transform(self):
return DataAugmentationForVideoMAE(
imagenet_normalize=True,
rescale_size=self.res,
), self.frame_gap, self.num_frames_dataset
def fwd(self, videos):
bool_masked_pos = torch.tensor(self.bool_masked_pos).to(videos.device).unsqueeze(0).bool()
bool_masked_pos = torch.cat([bool_masked_pos] * videos.shape[0])
_, x_encoded = self.model(videos.half(), bool_masked_pos, forward_full=True,
return_features=True)
return x_encoded
def get_forward_flow(self, videos):
fid = 6
forward_flow = self.model.get_flow(videos[:, :, fid], videos[:, :, fid + 1], conditioning_img=videos[:, :, fid + 2], mode='cosine')
backward_flow = self.model.get_flow(videos[:, :, fid + 1], videos[:, :, fid], conditioning_img=videos[:, :, fid - 1], mode='cosine')
occlusion_mask = get_occ_masks(forward_flow, backward_flow)[0]
forward_flow = forward_flow * occlusion_mask
forward_flow = torch.stack([forward_flow, forward_flow, forward_flow], dim=1)
forward_flow = forward_flow.to(videos.device)
forward_flow = F.interpolate(forward_flow, size=(2, 224, 224), mode='nearest')
return forward_flow
def extract_features(self, videos, segments=None):
'''
videos: [B, T, C, H, W], T is usually 4 and videos are normalized with imagenet norm
returns: [B, T, D] extracted features
Note:
For efficiency, the optical flow is computed and added for a single frame (300ms) as we found this to be sufficient
for capturing temporal dynamics in our experiments. This approach can be extended to multiple frames if needed,
depending on the complexity of the task.
'''
#resize to 224 to get keypoints and features
videos_downsampled = F.interpolate(videos.flatten(0, 1), size=(224, 224), mode='bilinear', align_corners=False)
videos_downsampled = videos_downsampled.view(videos.shape[0], videos.shape[1], videos.shape[2], 224, 224)
#for computing flow at higher resolution
videos_ = F.interpolate(videos.flatten(0, 1), size=(1024, 1024), mode='bilinear', align_corners=False)
videos = videos_.view(videos.shape[0], videos.shape[1], videos.shape[2], 1024, 1024)
videos = videos.transpose(1, 2).half()
videos_downsampled = videos_downsampled.transpose(1, 2).half()
# Get the forward flow for the frame at 300ms
forward_flow = self.get_forward_flow(videos)
# Verify that there are no nans forward flow
assert not torch.isnan(forward_flow).any(), "Forward flow is nan"
all_features = []
for x, arr in enumerate(self.frames):
#use the downsampled videos for keypoints
vid = videos_downsampled[:, :, arr, :, :]
frame0 = vid[:, :, 0]
frame1 = vid[:, :, 1]
frame2 = vid[:, :, 2]
#extract features from the video frames frame0 and frame1 and include features at keypoint regions of frame2
mask, choices, err_array, k_feat, keypoint_recon = self.model.get_keypoints(frame0, frame1, frame2, 10, 1)
#for the last set of frames only use features at keypoint regions of frame2
if (x == 2):
k_feat = k_feat[:, -10:, :]
#reshape the features to [batch size, num_features]
k_feat = k_feat.view(k_feat.shape[0], -1)
choices_image_resolution = choices * self.model.patch_size[1]
# At 300ms, add optical flow patches at the detected keypoint locations
# For the first frame (x == 0)
if x == 0:
# Extract the optical flow information from the forward flow matrix for the second channel (index 2)
flow_keyp = forward_flow[:, 2]
# Initialize a result tensor to store the flow patches
# Tensor shape: [batch_size, 8x8 patch (flattened to 64) * 2 channels, 10 keypoints]
flow = torch.zeros(vid.shape[0], 8 * 8 * 2, 10).to(videos.device)
# Patch size shift (since 8x8 patches are being extracted)
shift = 8
# Loop over each element in the batch to process individual video frames
for b in range(flow_keyp.size(0)):
# Extract the x and y coordinates of the keypoint locations for this batch element
x_indices = choices_image_resolution[b, :, 0]
y_indices = choices_image_resolution[b, :, 1]
# For each keypoint (10 total keypoints in this case)
for ind in range(10):
# Extract the 8x8 patch of optical flow at each keypoint's (x, y) location
# Flatten the patch and assign it to the corresponding slice in the result tensor
flow[b, :, ind] = flow_keyp[b, :, y_indices[ind]:y_indices[ind] + shift,
x_indices[ind]:x_indices[ind] + shift].flatten()
# Reshape the flow tensor for easier concatenation (flatten across all patches)
flow = flow.view(flow.shape[0], -1)
# Concatenate the extracted optical flow features with the existing feature tensor (k_feat)
k_feat = torch.cat([k_feat, flow], dim=1)
all_features.append(k_feat)
x_encoded = torch.cat(all_features, dim=1)
return x_encoded
class CWM_base_8x8_3frame(CWM):
def __init__(self,):
super().__init__('vitb_8x8patch_3frames')
class CWM_base_8x8_3frame_mean_embed(CWM):
def __init__(self,):
super().__init__('vitb_8x8patch_3frames', aggregate_embeddings=True)
# CWM* (keypoints only) 74.7
class CWM_base_8x8_3frame_keypoints(CWM_Keypoints):
def __init__(self,):
super().__init__('vitb_8x8patch_3frames')
# CWM* (keypoints + Flow) 75.4
class CWM_base_8x8_3frame_keypoints_flow(CWM_KeypointsFlow):
def __init__(self,):
super().__init__('vitb_8x8patch_3frames')
|