File size: 27,524 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
import numpy as np
import torch
from torch import nn
from torchvision import transforms
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
from kornia.filters.kernels import (get_spatial_gradient_kernel2d,
normalize_kernel2d)
def l2_normalize(x):
return F.normalize(x, p=2.0, dim=-1, eps=1e-6)
def reduce_max(x, dim, keepdim=True):
return torch.max(x, dim=dim, keepdim=keepdim)[0]
def coordinate_ims(batch_size, seq_length, imsize):
static = False
if seq_length == 0:
static = True
seq_length = 1
B = batch_size
T = seq_length
H,W = imsize
ones = torch.ones([B,H,W,1], dtype=torch.float32)
h = torch.divide(torch.arange(H).to(ones), torch.tensor(H-1, dtype=torch.float32))
h = 2.0 * ((h.view(1, H, 1, 1) * ones) - 0.5)
w = torch.divide(torch.arange(W).to(ones), torch.tensor(W-1, dtype=torch.float32))
w = 2.0 * ((w.view(1, 1, W, 1) * ones) - 0.5)
h = torch.stack([h]*T, 1)
w = torch.stack([w]*T, 1)
hw_ims = torch.cat([h,w], -1)
if static:
hw_ims = hw_ims[:,0]
return hw_ims
def dot_product_attention(queries, keys, normalize=True, eps=1e-8):
"""
Compute the normalized dot product between two PyTorch tensors
"""
B,N,D_q = queries.size()
_B,N_k,D_k = keys.size()
assert D_q == D_k, (queries.shape, keys.shape)
if normalize:
queries = F.normalize(queries, p=2.0, dim=-1, eps=eps)
keys = F.normalize(keys, p=2.0, dim=-1, eps=eps)
outputs = torch.matmul(queries, torch.transpose(keys, 1, 2)) # [B, N, N_k]
attention = torch.transpose(outputs, 1, 2) # [B, N_k, N]
return outputs
def sample_image_inds_from_probs(probs, num_points, eps=1e-9):
B,H,W = probs.shape
P = num_points
N = H*W
probs = probs.reshape(B,N)
probs = torch.maximum(probs + eps, torch.tensor(0., device=probs.device)) / (probs.sum(dim=-1, keepdim=True) + eps)
dist = Categorical(probs=probs, validate_args=False)
indices = dist.sample([P]).permute(1,0).to(torch.int32) # [B,P]
indices_h = torch.minimum(torch.maximum(torch.div(indices, W, rounding_mode='floor'), torch.tensor(0)), torch.tensor(H-1))
indices_w = torch.minimum(torch.maximum(torch.fmod(indices, W), torch.tensor(0)), torch.tensor(W-1))
indices = torch.stack([indices_h, indices_w], dim=-1) # [B,P,2]
return indices
def get_gradient_image(image, mode='sobel', order=1, normalize_kernel=True):
B,C,H,W = list(image.size())
# prepare kernel
kernel = get_spatial_gradient_kernel2d(mode, order)
if normalize_kernel:
kernel = normalize_kernel2d(kernel)
tmp_kernel = kernel.to(image).detach()
tmp_kernel = tmp_kernel.unsqueeze(1).unsqueeze(1)
kernel_flip = tmp_kernel.flip(-3)
# pad spatial dims of image
padding = [kernel.size(1) // 2, kernel.size(1) // 2, kernel.size(2) // 2, kernel.size(2) // 2]
out_channels = 3 if (order == 2) else 2
padded_image = F.pad(image.reshape(B*C, 1, H, W), padding, 'replicate')[:, :, None] # [B*C,1,1,H+p,W+p]
gradient_image = F.conv3d(padded_image, kernel_flip, padding=0).view(B, C, out_channels, H, W)
return gradient_image
def sample_coordinates_at_borders(image, num_points=16, mask=None, sum_edges=True, normalized_coordinates=True):
"""
Sample num_points in normalized (h,w) coordinates from the borders of the input image
"""
B,C,H,W = list(image.size())
if mask is not None:
assert mask.shape[2:] == image.shape[2:], (mask.size(), image.size())
else:
mask = torch.ones(size=(B,1,H,W)).to(image)
gradient_image = get_gradient_image(image * mask, mode='sobel', order=1) # [B,C,2,H,W]
gradient_magnitude = torch.sqrt(torch.square(gradient_image).sum(dim=2))
if sum_edges:
edges = gradient_magnitude.sum(1) # [B,H,W]
else:
edges = gradient_magnitude.max(1)[0]
if mask is not None:
edges = edges * mask[:,0]
coordinates = sample_image_inds_from_probs(edges, num_points=num_points)
if normalized_coordinates:
coordinates = coordinates.to(torch.float32)
coordinates /= torch.tensor([H-1,W-1], dtype=torch.float32)[None,None].to(coordinates.device)
coordinates = 2.0 * coordinates - 1.0
return coordinates
def index_into_images(images, indices, channels_last=False):
"""
index into an image at P points to get its values
images: [B,C,H,W]
indices: [B,P,2]
"""
assert indices.size(-1) == 2, indices.size()
if channels_last:
images = images.permute(0,3,1,2) # [B,C,H,W]
B,C,H,W = images.shape
_,P,_ = indices.shape
inds_h, inds_w = list(indices.to(torch.long).permute(2,0,1)) # [B,P] each
inds_b = torch.arange(B, dtype=torch.long).unsqueeze(-1).expand(-1,P).to(indices)
inds = torch.stack([inds_b, inds_h, inds_w], 0).to(torch.long)
values = images.permute(0,2,3,1)[list(inds)] # [B,P,C]
return values
def soft_index(images, indices, scale_by_imsize=True):
assert indices.shape[-1] == 2, indices.shape
B,C,H,W = images.shape
_,P,_ = indices.shape
# h_inds, w_inds = indices.split([1,1], dim=-1)
h_inds, w_inds = list(indices.permute(2,0,1))
if scale_by_imsize:
h_inds = (h_inds + 1.0) * torch.tensor(H).to(h_inds) * 0.5
w_inds = (w_inds + 1.0) * torch.tensor(W).to(w_inds) * 0.5
h_inds = torch.maximum(torch.minimum(h_inds, torch.tensor(H-1).to(h_inds)), torch.tensor(0.).to(h_inds))
w_inds = torch.maximum(torch.minimum(w_inds, torch.tensor(W-1).to(w_inds)), torch.tensor(0.).to(w_inds))
h_floor = torch.floor(h_inds)
w_floor = torch.floor(w_inds)
h_ceil = torch.ceil(h_inds)
w_ceil = torch.ceil(w_inds)
bot_right_weight = (h_inds - h_floor) * (w_inds - w_floor)
bot_left_weight = (h_inds - h_floor) * (w_ceil - w_inds)
top_right_weight = (h_ceil - h_inds) * (w_inds - w_floor)
top_left_weight = (h_ceil - h_inds) * (w_ceil - w_inds)
in_bounds = (bot_right_weight + bot_left_weight + top_right_weight + top_left_weight) > 0.95
in_bounds = in_bounds.to(torch.float32)
top_left_vals = index_into_images(images, torch.stack([h_floor, w_floor], -1))
top_right_vals = index_into_images(images, torch.stack([h_floor, w_ceil], -1))
bot_left_vals = index_into_images(images, torch.stack([h_ceil, w_floor], -1))
bot_right_vals = index_into_images(images, torch.stack([h_ceil, w_ceil], -1))
im_vals = top_left_vals * top_left_weight[...,None]
im_vals += top_right_vals * top_right_weight[...,None]
im_vals += bot_left_vals * bot_left_weight[...,None]
im_vals += bot_right_vals * bot_right_weight[...,None]
im_vals = im_vals.view(B,P,C)
return im_vals
def compute_compatibility(positions, plateau, phenotypes=None, availability=None, noise=0.1):
"""
Compute how well "fit" each agent is for the position it's at on the plateau,
according to its "phenotype"
positions: [B,P,2]
plateau: [B,H,W,Q]
phenotypes: [B,P,D] or None
availability: [B,H,W,A]
"""
B,H,W,Q = plateau.shape
P = positions.shape[1]
if phenotypes is None:
phenotypes = soft_index(plateau, positions)
if availability is not None:
assert list(availability.shape)[:-1] == list(plateau.shape)[:-1], (availability.shape, plateau.shape)
A = availability.size(-1)
assert P % A == 0, (P, A)
S = P // A # population size
print("computing availability -- needlessly?", [B,H,W,A,Q])
plateau = availability[...,None] * plateau[...,None,:] # [B,H,W,A,Q]
plateau = plateau.view(B,H,W,A*Q)
plateau_values = soft_index(plateau.permute(0,3,1,2), positions, scale_by_imsize=True)
if noise > 0:
plateau_values += noise * torch.rand(size=plateau_values.size(), dtype=torch.float32).to(plateau_values.device)
if availability is not None:
plateau_values = l2_normalize(plateau_values.view(B, P, A, Q))
inds = torch.tile(torch.eye(A)[None].expand(B,-1,-1), (1,S,1))[...,None] # [B,P,A,1]
plateau_values = torch.sum(plateau_values * inds.to(plateau_values), dim=-2) # [B,P,Q]
else:
plateau_values = l2_normalize(plateau_values)
compatibility = torch.sum(
l2_normalize(phenotypes) * plateau_values, dim=-1, keepdim=True) # [B,P,1]
return compatibility
def compute_pairwise_overlaps(masks, masks_target=None, mask_thresh=None, eps=1e-6):
"""Find overlaps between masks"""
B,N,P = masks.shape
if masks_target is None:
masks_target = masks
if mask_thresh is not None:
masks = (masks > mask_thresh).to(torch.float32)
masks_target = (masks_target > mask_thresh).to(torch.float32)
## union and intersection
overlaps = masks[...,None] * masks_target[...,None,:] # [B,N,P,P]
I = overlaps.sum(dim=1)
U = torch.maximum(masks[...,None], masks_target[...,None,:]).sum(dim=1)
iou = I / torch.maximum(U, torch.tensor(eps, dtype=torch.float32)) # [B,P,P]
return iou
def compete_agents(masks, fitnesses, alive,
mask_thresh=0.5, compete_thresh=0.2,
sticky_winners=True):
"""
Kill off agents (which mask dimensions are "alive") based on mask overlap and fitnesses of each
args:
masks: [B,N,P]
fitnesses: [B,P,1]
alive: [B,P,1]
returns:
still_alive: [B,P,1]
"""
B,N,P = masks.shape
assert list(alive.shape) == [B,P,1], alive.shape
assert list(fitnesses.shape) == [B,P,1], fitnesses.shape
## find territorial disputes
overlaps = compute_pairwise_overlaps(masks, masks_target=None, mask_thresh=mask_thresh)
disputes = overlaps > compete_thresh # [B,P,P] <bool>
## agents don't fight themselves
disputes = torch.logical_and(
disputes, torch.logical_not(
torch.eye(P, dtype=torch.bool, device=disputes.device).unsqueeze(0).expand(B,-1,-1)))
## kill off the agents with lower fitness in each dispute
killed = torch.logical_and(disputes, fitnesses < torch.transpose(fitnesses, 1, 2))
## once an agent wins, it always wins again
if sticky_winners:
winners = (alive > 0.5)
losers = torch.logical_not(winners)
## winners can't lose to last round's losers
winners_vs_losers = torch.logical_and(winners, torch.transpose(losers, 1, 2)) # [B,P,P]
killed = torch.logical_and(killed, torch.logical_not(winners_vs_losers))
## losers can't overtake last round's winners
losers_vs_winners = torch.logical_and(losers, torch.transpose(winners, 1, 2))
losers_vs_winners_disputes = torch.logical_and(losers_vs_winners, disputes)
killed = torch.logical_or(killed, losers_vs_winners_disputes)
## if an agent was killed by *any* competitor, it's dead
killed = torch.any(killed, dim=2, keepdim=True)
alive = torch.logical_not(killed).to(torch.float32)
return alive
def compute_distance_weighted_vectors(vector_map, positions, mask=None, beta=1.0, eps=1e-8):
"""
compute vectors whose values are a weighted mean of vector_map, where weights are given by distance.
"""
B,H,W,D = vector_map.shape
assert positions.size(-1) == 2, positions.size()
B,P,_ = positions.shape
N = H*W
if mask is None:
mask = torch.ones_like(vector_map[...,0:1]).to(vector_map.device)
else:
assert list(mask.shape) == [B,H,W,1]
hw_grid = coordinate_ims(B, 0, [H,W]).view(B, N, 2).to(vector_map.device)
delta_positions = hw_grid[:,None] - positions[:,:,None] # [B,P,N,2]
distances = torch.sqrt(delta_positions[...,0]**2 + delta_positions[...,1]**2 + eps) # [B,P,N]
## max distance is 2*sqrt(2)
inv_distances = (2.0 * np.sqrt(2.0)) / (distances + eps)
inv_distances = F.softmax(beta * inv_distances * mask.view(B, 1, N), dim=-1) # [B,P,N]
distance_weighted_vectors = torch.sum(
vector_map.view(B, 1, N, D) * inv_distances[...,None], dim=2, keepdim=False) # [B,P,D]
return distance_weighted_vectors
def masks_from_phenotypes(plateau, phenotypes, normalize=True):
B,H,W,Q = plateau.shape
N = H*W
masks = dot_product_attention(
queries=plateau.view(B,N,Q),
keys=phenotypes,
normalize=normalize)
masks = F.relu(masks)
return masks
class Competition(nn.Module):
def __init__(
self,
size=None,
num_masks=16,
num_competition_rounds=5,
mask_beta=10.0,
reduce_func=reduce_max,
stop_gradient=True,
stop_gradient_phenotypes=True,
normalization_func=l2_normalize,
sum_edges=True,
mask_thresh=0.5,
compete_thresh=0.2,
sticky_winners=True,
selection_strength=100.0,
homing_strength=10.0,
mask_dead_segments=True
):
super().__init__()
self.num_masks = self.M = num_masks
self.num_competition_rounds = num_competition_rounds
self.mask_beta = mask_beta
self.reduce_func = reduce_func
self.normalization_func = normalization_func
## stop gradients
self.sg_func = lambda x: (x.detach() if stop_gradient else x)
self.sg_phenotypes_func = lambda x: (x.detach() if stop_gradient_phenotypes else x)
## agent sampling kwargs
self.sum_edges = sum_edges
## competition kwargs
self.mask_thresh = mask_thresh
self.compete_thresh = compete_thresh
self.sticky_winners = sticky_winners
self.selection_strength = selection_strength
self.homing_strength = homing_strength
self.mask_dead_segments = mask_dead_segments
## shapes
self.B = self.T = self.BT = self.N = self.Q = None
self.size = size # [H,W]
if self.size:
assert len(self.size) == 2, self.size
def reshape_batch_time(self, x, merge=True):
if merge:
self.is_temporal = True
B, T = x.size()[0:2]
if self.B:
assert (B == self.B), (B, self.B)
else:
self.B = B
if self.T:
assert (T == self.T), (T, self.T)
else:
self.T = T
assert B*T == (self.B * self.T), (B*T, self.B*self.T)
if self.BT is None:
self.BT = self.B * self.T
return torch.reshape(x, [self.BT] + list(x.size())[2:])
else: # split
BT = x.size()[0]
assert self.B and self.T, (self.B, self.T)
if self.BT is not None:
assert BT == self.BT, (BT, self.BT)
else:
self.BT = BT
return torch.reshape(x, [self.B, self.T] + list(x.size())[1:])
def process_plateau_input(self, plateau):
shape = plateau.size()
if len(shape) == 5:
self.is_temporal = True
self.B, self.T, self.H, self.W, self.Q = shape
self.N = self.H * self.W
self.BT = self.B * self.T
plateau = self.reshape_batch_time(plateau)
elif (len(shape) == 4) and (self.size is None):
self.is_temporal = False
self.B, self.H, self.W, self.Q = shape
self.N = self.H * self.W
self.T = 1
self.BT = self.B*self.T
elif (len(shape) == 4) and (self.size is not None):
self.is_temporal = True
self.B, self.T, self.N, self.Q = shape
self.BT = self.B * self.T
self.H, self.W = self.size
plateau = self.reshape_batch_time(plateau)
plateau = torch.reshape(plateau, [self.BT, self.H, self.W, self.Q])
elif len(shape) == 3:
assert self.size is not None, \
"You need to specify an image size to reshape the plateau of shape %s" % shape
self.is_temporal = False
self.B, self.N, self.Q = shape
self.T = 1
self.BT = self.B
self.H, self.W = self.size
plateau = torch.reshape(plateau, [self.BT, self.H, self.W, self.Q])
else:
raise ValueError("input plateau map with shape %s cannot be reshaped to [BT, H, W, Q]" % shape)
return plateau
def forward(self,
plateau,
agents=None,
alive=None,
phenotypes=None,
compete=True,
update_pointers=True,
yoke_phenotypes_to_agents=True,
noise=0.1
):
"""
Find the uniform regions within the plateau map
by competition between visual "indices."
args:
plateau: [B,[T],H,W,Q] feature map with smooth "plateaus"
returns:
masks: [B, [T], H, W, M] <float> one mask in each of M channels
agents: [B, [T], M, 2] <float> positions of agents in normalized coordinates
alive: [B, [T], M] <float> binary vector indicating which masks are valid
phenotypes: [B, [T], M, Q]
unharvested: [B, [T], H, W] <float> map of regions that weren't covered
"""
## preprocess
plateau = self.process_plateau_input(plateau) # [BT,H,W,Q]
plateau = self.normalization_func(plateau)
## sample initial indices ("agents") from borders of the plateau map
if agents is None:
agents = sample_coordinates_at_borders(
plateau.permute(0,3,1,2),
num_points=self.M,
mask=None,
sum_edges=self.sum_edges)
else:
if self.is_temporal:
agents = agents.view(self.BT, *agents.shape[2:])
## the agents have "phenotypes" depending on where they're situated on the plateau map
if phenotypes is None:
phenotypes = self.sg_phenotypes_func(
self.normalization_func(
soft_index(plateau.permute(0,3,1,2),
agents, scale_by_imsize=True)))
elif self.is_temporal:
phenotypes = phenotypes.view(self.BT, *phenotypes.shape[2:])
## the "fitness" of an agent -- how likely it is to survive competition --
## is how well its phenotype matches the plateau vector at its current position
## initially all of these agents are "alive"
if alive is None:
alive = torch.ones_like(agents[...,-1:]) # [BT,M,1]
fitnesses = compute_compatibility(agents, plateau, phenotypes, availability=None, noise=noise)
alive_mask = None
else:
if self.is_temporal:
alive = alive.view(self.BT, *alive.shape[2:])
alive_mask = (alive > 0.5).float()
fitnesses = alive_mask + compute_compatibility(agents, plateau, phenotypes, availability=None, noise=noise) * (1 - alive_mask)
alive_t = torch.transpose(alive, 1, 2) # [BT, 1, M]
## compute the masks at initialization
masks_pred = masks_from_phenotypes(plateau, phenotypes, normalize=True)
## find the "unharvested" regions of the plateau map not covered by agents
unharvested = torch.minimum(self.reduce_func(masks_pred, dim=-1, keepdim=True), torch.tensor(1.0))
unharvested = 1.0 - unharvested.view(self.BT, self.H, self.W, 1)
if alive_mask is not None:
new_agents = sample_coordinates_at_borders(
plateau.permute(0,3,1,2), num_points=self.M,
mask=unharvested.permute(0,3,1,2),
sum_edges=self.sum_edges)
agents = agents * alive_mask + new_agents * (1.0 - alive_mask)
new_phenotypes = self.sg_phenotypes_func(
self.normalization_func(
soft_index(plateau.permute(0,3,1,2),
new_agents, scale_by_imsize=True)))
phenotypes = phenotypes * alive_mask + new_phenotypes * (1.0 - alive_mask)
for r in range(self.num_competition_rounds):
# print("Evolution round {}".format(r+1))
## compute the "availability" of the plateau map for each agent (i.e. where it can harvest from)
alive_t = torch.transpose(alive, 1, 2) # [BT, 1, M]
# availability = alive_t * masks_pred + (1.0 - alive_t) * unharvested.view(self.BT, self.N, 1)
# availability = availability.view(self.BT, self.H, self.W, self.M)
## update the fitnesses
if update_pointers and compete:
fitnesses = compute_compatibility(
positions=agents,
plateau=plateau,
phenotypes=phenotypes,
# availability=availability)
availability=None,
noise=noise
)
## kill agents that have wandered off the map
in_bounds = torch.all(
torch.logical_and(agents < 1.0, agents > -1.0),
dim=-1, keepdim=True) # [BT,M,1]
fitnesses *= in_bounds.to(fitnesses)
## break ties in fitness
fitnesses -= 0.001 * torch.arange(self.M, dtype=torch.float32)[None,:,None].expand(self.BT,-1,-1).to(fitnesses.device)
## recompute the masks (why?)
if yoke_phenotypes_to_agents:
occupied_regions = self.sg_phenotypes_func(
soft_index(plateau.permute(0,3,1,2), agents, scale_by_imsize=True))
masks_pred = masks_from_phenotypes(plateau, occupied_regions, normalize=True) # [BT,N,M]
## have each pair of agents compete.
## If their masks overlap, the winner is the one with higher fitness
if compete:
alive = compete_agents(masks_pred, fitnesses, alive,
mask_thresh=self.mask_thresh,
compete_thresh=self.compete_thresh,
sticky_winners=self.sticky_winners)
alive *= in_bounds.to(alive)
alive_t = torch.transpose(alive, 1, 2)
# print("Num alive masks", alive.sum(), "which ones --> ", np.where(alive[0,:,0].detach().cpu().numpy()))
if not yoke_phenotypes_to_agents:
masks_pred = masks_from_phenotypes(plateau, phenotypes, normalize=True)
## update which parts of the plateau are "unharvested"
unharvested = torch.minimum(self.reduce_func(masks_pred * alive_t, dim=-1, keepdim=True),
torch.tensor(1.0, dtype=torch.float32))
unharvested = 1.0 - unharvested.view(self.BT, self.H, self.W, 1)
## update phenotypes of the winners
if update_pointers:
if self.mask_thresh is not None:
winner_phenotypes = (masks_pred[...,None] > self.mask_thresh).to(plateau)
if self.selection_strength > 0:
winner_phenotypes = winner_phenotypes * plateau.view(self.BT, self.N, 1, self.Q)
winner_phenotypes = self.normalization_func(winner_phenotypes.mean(dim=1)) # [BT,M,Q]
phenotypes += (alive * winner_phenotypes) * self.selection_strength
## reinitialize losing agent positions
alive_mask = (alive > 0.5).to(torch.float32)
loser_agents = sample_coordinates_at_borders(
plateau.permute(0,3,1,2), num_points=self.M,
mask=unharvested.permute(0,3,1,2),
sum_edges=self.sum_edges)
agents = agents * alive_mask + loser_agents * (1.0 - alive_mask)
## reinitialize loser agent phenotypes
loser_phenotypes = self.normalization_func(
compute_distance_weighted_vectors(plateau, agents, mask=unharvested, beta=self.homing_strength))
phenotypes = alive_mask * phenotypes + (1.0 - alive_mask) * loser_phenotypes
phenotypes = self.normalization_func(phenotypes)
## that's it for this round!
# print("round %d" % r, alive.shape, torch.where(alive[0,:,0]))
## run a final competition between the surviving masks
if self.mask_beta is not None:
masks_pred = F.softmax(
self.mask_beta * masks_pred * alive_t - \
self.mask_beta * (1.0 - alive_t), dim=-1)
if self.mask_dead_segments:
masks_pred *= alive_t
masks_pred = masks_pred.view(self.BT,self.H,self.W,self.M)
if self.is_temporal:
masks_pred = self.reshape_batch_time(masks_pred, merge=False)
agents = self.reshape_batch_time(agents, merge=False)
alive = self.reshape_batch_time(alive, merge=False)
phenotypes = self.reshape_batch_time(phenotypes, merge=False)
unharvested = self.reshape_batch_time(unharvested, merge=False)
return (masks_pred, agents, alive, phenotypes, unharvested)
@staticmethod
def masks_to_segments(masks):
return masks.argmax(-1)
@staticmethod
def flatten_plateau_with_masks(plateau, masks, alive, flatten_masks=True):
B,M,_ = alive.shape
Q = plateau.shape[-1]
if flatten_masks:
masks = F.one_hot((alive[...,None,None,:,0] * masks).argmax(-1), num_classes=M).float()
flat_plateau = torch.zeros_like(plateau)
phenotypes = torch.zeros((B,M,Q), device=plateau.device).float()
for b in range(B):
m_inds = torch.where(alive[b,:,0])[0]
masks_b = masks[b,...,m_inds]
num_px = masks_b.sum((0,1)).clamp(min=1)[:,None] # [K,1]
phenos_b = torch.einsum('hwk,hwq->kq', masks_b, plateau[b]) / num_px # [K,Q]
flat_plateau_b = (masks_b[...,None] * phenos_b[None,None]).sum(-2) # [H,W,Q]
phenotypes[b,m_inds,:] = phenos_b
flat_plateau[b] = flat_plateau_b
_norm = lambda x: F.normalize(x, p=2, dim=-1)
return (_norm(flat_plateau), _norm(phenotypes))
@staticmethod
def plot_agents(agents, alive, size=[128,128]):
B,M,_ = alive.shape
agent_map = -1 * torch.ones((B,*size), device=alive.device, dtype=torch.long)
for b in range(B):
inds = torch.where(alive[b,:,0])
for i in inds[0]:
pos = agents[b,i]*0.5 + 0.5
pos = pos * torch.tensor(size, device=pos.device)
hmin, wmin = list(torch.floor(pos).long())
hmax, wmax = list(torch.ceil(pos).long())
agent_map[b,[hmin,hmin,hmax,hmax],[wmin,wmax,wmin,wmax]] = i
return agent_map
if __name__ == '__main__':
Comp = Competition(num_masks=32, num_competition_rounds=5)
left = torch.ones(size=(32,8)).unsqueeze(-1) * torch.tensor([1.,0.2,0.])
middle = torch.ones(size=(32,16)).unsqueeze(-1) * torch.tensor([0.,1.,0.2])
right = torch.ones(size=(32,8)).unsqueeze(-1) * torch.tensor([0.1,0.,1.])
plateau = torch.cat([left, middle, right], dim=-2).unsqueeze(0)
masks, agents, alive, phenotypes, unharvested = Comp(plateau)
mask_inds = np.where(alive[0,:,0].numpy())[0]
print(np.argmax(masks[0,...], axis=-1))
for ind in mask_inds:
print("num pixels in mask %d ---> %d" % (ind, (np.argmax(masks[0], -1) == ind).sum()))
|