File size: 10,712 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import argparse
import datetime
import numpy as np
import random
import time
import torch
import json
import os
from pathlib import Path
from optim_factory import create_optimizer
from torch.nn.parallel import DistributedDataParallel as DDP
from utils import NativeScalerWithGradNormCount as NativeScaler
import utils
from cwm.data.dataset_utils import build_pretraining_dataset
from cwm.model import model_pretrain
from engine_for_pretraining import train_one_epoch
import wandb
import torch.backends.cudnn as cudnn
np.random.seed(0)
random.seed(0)
def get_args():
parser = argparse.ArgumentParser('CWM pre-training script', add_help=False)
# training parameters
parser.add_argument('--batch_size', default=64, type=int, help='per-GPU batch-size')
parser.add_argument('--epochs', default=800, type=int, help='number of training epochs')
parser.add_argument('--save_ckpt_freq', default=50, type=int, help='save checkpoint frequency')
parser.add_argument('--print_freq', default=1, type=int, help='frequency of printing training stats')
parser.add_argument('--accum_iter', default=1, type=int, help='number of steps to accumulate gradients')
parser.add_argument('--eval', action='store_true', help='evaluation mode')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None, help='path where to tensorboard log')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--val_after', default=50, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--use_wandb', action='store_true', help='use wandb for logging')
# Model parameters
parser.add_argument('--model', default='vitb_8x8patch_3frames', type=str, help='Name of model to train')
parser.add_argument('--context_frames', type=int, default=2, help='number of frames model will see densely')
parser.add_argument('--target_frames', type=int, default=1, help='number of frames model will see sparsely')
parser.add_argument('--temporal_units', type=str, default='ms', help='the units in which time is defined')
parser.add_argument('--sampling_rate', type=int, default=150, help='temporal gap between context/target frames')
parser.add_argument('--context_target_gap', type=int, nargs='+', default=[150, 150], help='gap between context/target')
# Masking and target parameters
parser.add_argument('--mask_type', default='rotated_table', type=str, help='masked strategy')
parser.add_argument('--mask_ratio', default=0.75, type=float, help='masking ratio')
parser.add_argument('--mask_kwargs', default='', type=json.loads, help='extra arguments for masking generator')
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT', help='Drop path rate (default: 0.1)')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default:adamw)')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer epsilon')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=0.05, help='Final value of the weight decay.')
parser.add_argument('--lr', type=float, default=1.5e-4, metavar='LR', help='learning rate (default: 1.5e-4)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', help='warmup learning rate')
parser.add_argument('--min_lr', type=float, default=0, metavar='LR', help='lower lr bound for cyclic schedulers)')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N', help='epochs to warmup LR')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='steps to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='/path/to/list_kinetics-400', type=str, help='dataset path')
parser.add_argument('--data_path_list', type=str, nargs='+', default=None, help='[path1, path2, path3, ...]')
parser.add_argument('--num_workers', default=10, type=int)
# Augmentation parameters
parser.add_argument('--augmentation_type', type=str, default='multiscale', choices=['multiscale', 'center', 'none'])
parser.add_argument('--augmentation_scales', type=float, nargs='+', default=[1.0, 0.875, 0.75, 0.66])
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser.parse_args()
# Assuming 'model' is your PyTorch model
def export_model_parameters(model):
with open('model_parameters.txt', 'w') as f:
for name, param in model.named_parameters():
f.write(f"{name} {param.size()}\n")
def main(args):
## Setup distributed training
utils.init_distributed_mode(args)
cudnn.benchmark = True
device = torch.device(args.device)
num_tasks = utils.get_world_size()
sampler_rank = global_rank = utils.get_rank()
world_size = utils.get_world_size()
## Fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
## Initialize model
model = getattr(model_pretrain, args.model)()
args.input_size = int(model.encoder.patch_embed.img_size[0])
args.tubelet_size = model.patch_size[0]
args.mask_input_size = (
(args.context_frames + args.target_frames) // args.tubelet_size,
args.input_size // model.patch_size[-2],
args.input_size // model.patch_size[-1],
)
## Prepare datasets
dataset_train = build_pretraining_dataset(args)
sampler_train = torch.utils.data.DistributedSampler(
dataset_train,
num_replicas=num_tasks,
rank=sampler_rank,
shuffle=True,
drop_last=True
)
data_loader_train = torch.utils.data.DataLoader(
dataset_train,
sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True, drop_last=True,
worker_init_fn=utils.seed_worker,
)
num_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks
n_params, n_params_str = utils.get_model_num_parameters(model)
total_batch_size = args.batch_size * world_size * args.accum_iter
## LR and warmup
export_model_parameters(model)
model = DDP(model.to(device), device_ids=[args.gpu], find_unused_parameters=False)
## Optimizer, loss scaler
optimizer = create_optimizer(args, model.module)
loss_scaler = NativeScaler()
## LR scheduler, WD scheduler
args.lr = args.lr * total_batch_size / 256
args.min_lr = args.min_lr * total_batch_size / 256
args.warmup_lr = args.warmup_lr * total_batch_size / 256
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_steps_per_epoch
)
## Resume from checkpoint, if any
utils.auto_load_model(args=args, model=model, optimizer=optimizer, loss_scaler=loss_scaler)
## Print training arguments
print("world size: %d" % args.world_size)
print("model: %s" % args.model)
print("image size: %s" % str(args.input_size))
print("patch size: %s" % str(model.module.encoder.patch_embed.patch_size[-2:]))
print("context frames: %s" % str(args.context_frames))
print("target frames: %s" % str(args.target_frames))
print("per-device batch size: %d" % total_batch_size)
print("total batch size: %d" % total_batch_size)
print("grad accumulation: %d" % args.accum_iter)
print("dataset length: %d" % len(dataset_train))
print("steps per epoch: %d" % num_steps_per_epoch)
print("num parameters: %s" % n_params_str)
print("lr: %.8f" % args.lr)
## Setup logging
if args.use_wandb and utils.is_main_process():
wandb.init(project="cwm", name=args.output_dir.split('/')[-1], config=args)
print(f'start training at epoch {args.start_epoch} for {args.epochs} epochs')
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
# Run one epoch
train_stats = train_one_epoch(
model, data_loader_train, optimizer, device, epoch, loss_scaler,
start_steps=epoch * num_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
args=args,
global_rank=global_rank,
)
# Save checkpoint
if args.output_dir and ((epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs):
utils.save_model(args=args, model=model, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch)
# Logging
start_time = time.time()
do_write = (global_rank == 0) if args.use_xla else utils.is_main_process()
if args.output_dir and do_write:
log_stats = {
**{f'train/{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'params': n_params,
'epoch_time': time.time() - start_time
}
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if args.use_wandb:
wandb.log(log_stats)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts)
|