File size: 26,565 Bytes
6dfcb0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import datetime
import io
import os
import random
import sys
import time
from collections import defaultdict, deque
from pathlib import Path
import matplotlib
import numpy as np
import torch
import torch.distributed as dist
import torch.nn.functional as F
from einops import rearrange
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.utils import get_state_dict
from torch import inf
# sys.path.append(os.path.join(os.environ['HOME'], '.cache/torch/CutLER'))
# sys.path.append(os.path.join(os.environ['HOME'], '.cache/torch/CutLER/maskcut'))
# sys.path.append(os.path.join(os.environ['HOME'], '.cache/torch/CutLER/third_party'))
# import dino
# from maskcut import get_affinity_matrix, second_smallest_eigenvector, get_salient_areas, check_num_fg_corners, get_masked_affinity_matrix
#
# #from maskcut import get_affinity_matrix, second_smallest_eigenvector, get_salient_areas, check_num_fg_corners
# # DINO hyperparameters
# global dino_backbone
# dino_backbone = None
def patchify(x, tubelet_size, patch_size):
'''
:param x: [B, C, T, H, W]
:param tubelet_size: 2
:param patch_size: (8, 8)
:return:
'''
videos_squeeze = rearrange(x,
'b c (t p0) (h p1) (w p2) -> b (t h w) (p0 p1 p2) c',
p0=tubelet_size,
p1=patch_size[0],
p2=patch_size[1])
videos_patch = rearrange(videos_squeeze, 'b n p c -> b n (p c)')
return videos_patch
def imagenet_unnormalize(x, temporal_dim=2):
device = x.device
if len(x.shape) == 3:
if x.shape[0] == 3: # "channel_first"
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[:, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[:, None, None].to(x)
else: # channel_last
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :].to(x)
elif len(x.shape) == 4:
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None].to(x)
elif len(x.shape) == 5:
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x)
if temporal_dim == 2:
mean = mean.transpose(1,2)
std = std.transpose(1,2)
return x * std + mean
def imagenet_normalize(x, temporal_dim=2):
device = x.device
if len(x.shape) == 3:
if x.shape[0] == 3: # "channel_first"
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[:, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[:, None, None].to(x)
else: # channel_last
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :].to(x)
elif len(x.shape) == 4:
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None].to(x)
elif len(x.shape) == 5:
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None].to(x)
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None].to(x)
if temporal_dim == 2:
mean = mean.transpose(1,2)
std = std.transpose(1,2)
return (x - mean) / std
def sinusoidal_embedding(x, n_freq=5, keep_ori=True):
"""
create sin embedding for 3d vectors
input:
x: *x3
n_freq: number of raised frequency
"""
shape = list(x.shape)
assert x.shape[-1] == 3, "expect the last dimension to have size 3"
x = x.reshape(-1, 3)
embedded = []
if keep_ori:
embedded.append(x)
emb_fns = [torch.sin, torch.cos]
freqs = 2. ** torch.linspace(0., n_freq - 1, steps=n_freq)
for freq in freqs:
for emb_fn in emb_fns:
embedded.append(emb_fn(freq * x))
embedded = torch.cat(embedded, dim=-1)
C = embedded.shape[-1]
embedded = embedded.reshape(shape[:-1] + [C])
return embedded
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def update2(self, kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.2f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.6f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save(checkpoint, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
args.distributed = True
args.rank = int(os.environ["RANK"])
args.gpu = int(os.environ['LOCAL_RANK'])
args.world_size = int(os.environ['WORLD_SIZE'])
args.dist_backend = 'nccl'
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
missing_keys = []
unexpected_keys = []
error_msgs = []
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print("Ignored weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
# breakpoint()
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
start_warmup_value=0, warmup_steps=-1):
warmup_schedule = np.array([])
warmup_iters = warmup_epochs * niter_per_ep
if warmup_steps > 0:
warmup_iters = warmup_steps
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
iter_per_len = iters/len(iters)
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iter_per_len))
# schedule = np.array(
# [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def get_model_num_parameters(model):
num_parameters = sum([v.numel() for v in model.parameters() if v.requires_grad])
human_readable_fn = lambda num: \
f'{num / 1e9:.3f} B' if num >= 1e9 else f'{num / 1e6:.3f} M' \
if num >= 1e6 else f'{num / 1e3:.3f} K' if num >= 1e3 else str(num)
num_parameters_str = human_readable_fn(num_parameters)
return num_parameters, num_parameters_str
def save_model(args, epoch, model, optimizer, loss_scaler, model_ema=None):
output_dir = Path(args.output_dir)
epoch_name = str(epoch)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
if model_ema is not None:
to_save['model_ema'] = get_state_dict(model_ema)
save_on_master(to_save, checkpoint_path)
else:
client_state = {'epoch': epoch}
if model_ema is not None:
client_state['model_ema'] = get_state_dict(model_ema)
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)
def auto_load_model(args, model, optimizer, loss_scaler, model_ema=None, global_rank=None):
output_dir = Path(args.output_dir)
if loss_scaler is not None:
# torch.amp
if len(args.resume) == 0:
import glob
if global_rank is None:
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
else:
all_checkpoints = glob.glob(os.path.join(output_dir, f'checkpoint-*-rank-{global_rank}.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
if global_rank is None:
t = ckpt.split('-')[-1].split('.')[0]
else:
t = ckpt.split('checkpoint-')[1].split('-')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
if global_rank is None:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
else:
args.resume = os.path.join(output_dir, 'checkpoint-%d-rank-%d.pth' % (latest_ckpt, global_rank))
if args.resume:
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model.module.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
else:
# deepspeed, only support '--auto_resume'.
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d' % latest_ckpt)
print("Auto resume checkpoint: %d" % latest_ckpt)
_, client_states = model.load_checkpoint(args.output_dir, tag='checkpoint-%d' % latest_ckpt)
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
def unpatchify(x, patch_size):
"""
x: (N, L, patch_size**2*3)
imgs: (N, 3, H, W)
"""
p = patch_size
h = w = int(x.shape[1] ** .5)
assert h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs
def unpatchify_cwm(x, patch_size, mask=None):
"""
x: (N, L, patch_size**2 *3)
imgs: (N, 3, H, W)
"""
if mask is not None:
h = w = int(mask.shape[1] ** .5)
recon = torch.zeros(x.shape[0], h*w, x.shape[-1]).to(x)
recon[mask] = x.flatten(0, 1)
else:
h = w = int(x.shape[1] ** .5)
recon = x
p = patch_size
assert h * w == recon.shape[1]
recon = recon.reshape(shape=(recon.shape[0], h, w, p, p, 3))
recon = torch.einsum('nhwpqc->nchpwq', recon)
imgs = recon.reshape(shape=(recon.shape[0], 3, h * p, h * p))
return imgs
def sample_embedding(embedding, pos, mode='bilinear'):
"""
Sample embedding tensor at specified positions
embedding: [B, H, W, C]
pos: [B, P, 2] (convention: first dim is row, second dim is column)
"""
embedding = embedding.permute(0, 3, 1, 2) # [B, C, H, W]
device = embedding.device
# grid_sampling assues first value to be column-dimension, second value to be row-dimension
pos = pos.flip(dims=(-1,))
assert pos.min() >= -1 and pos.max() <= 1, "grid sampling expect to be in range [-1, 1]"
return F.grid_sample(embedding, pos[:, None].to(device), mode=mode).squeeze(-2).permute(0, 2, 1) # [B, P, C]
def sample_positions_from_dist(size, dist):
"""
Samples positions from a given unnormalized probability distribution.
Parameters:
num (int): The number of samples to draw for each distribution in the batch.
dist (torch.Tensor): A float tensor of shape [B, H, W] representing the unnormalized
probability distributions for B batches each of length N.
Returns:
torch.Tensor: A tensor of shape [B, num] containing the sampled positions.
"""
assert dist.dim() == 3, "dist should be a 3D tensor with shape [B, H, W]."
assert len(size) == 2, "size should be a 2D tuple (batch_size, num_samples)"
B, H, W = dist.shape
new_B, num_samples = size
if dist.min() < 0:
dist -= dist.min()
# Flatten the last two dimensions to make it [B, H*W]
flattened_dist = dist.view(B, -1)
# Sample indices according to the normalized distribution
sampled_indices = torch.multinomial(flattened_dist, new_B * num_samples, replacement=True)
# Convert the flattened indices back to 2D indices
sampled_row_indices = sampled_indices // W
sampled_col_indices = sampled_indices % W
# Stack the row and column indices
samples = torch.stack((sampled_row_indices, sampled_col_indices), dim=-1)
samples = samples.view(new_B, num_samples, 2)
return samples
#
# def get_dino_predominance(images, dims=[28, 28], current_mask=None, painting=None, img_size=[224, 224]):
# global dino_backbone
# if dino_backbone is None:
# vit_arch = 'base'
# vit_feat = 'k'
# patch_size = 8
# # DINO pre-trained model
# url = "https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
# feat_dim = 768
# dino_backbone = dino.ViTFeat(url, feat_dim, vit_arch, vit_feat, patch_size)
# dino_backbone = dino_backbone.eval().requires_grad_(False).cuda()
#
# input_dino = images
# # input_dino = input_dino - torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(input_dino.device)
# # input_dino = input_dino / torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(input_dino.device)
# # input_dino = images.tensor
# input_dino = torch.nn.functional.interpolate(input_dino, size=img_size, mode='bilinear')
# features = dino_backbone(input_dino)
#
# predominence_map = []
#
# for i in range(features.shape[0]):
# feats = features[i]
# if current_mask == None:
# painting = torch.from_numpy(np.zeros(dims))
# painting = painting.to(feats)
# else:
# feats, painting = get_masked_affinity_matrix(painting, feats, current_mask, ps=dims[0])
#
# A, D = get_affinity_matrix(feats, tau=0.15)
# # get the second-smallest eigenvector
# _, second_smallest_vec = second_smallest_eigenvector(A, D)
# # get salient area
# bipartition = get_salient_areas(second_smallest_vec)
#
# # check if we should reverse the partition based on:
# # 1) peak of the 2nd smallest eigvec 2) object centric bias
# seed = np.argmax(np.abs(second_smallest_vec))
# nc = check_num_fg_corners(bipartition, dims)
# if nc >= 2:
# reverse = True
# else:
# reverse = bipartition[seed] != 1
# if reverse:
# second_smallest_vec = 1 - second_smallest_vec
# second_smallest_vec = torch.tensor(second_smallest_vec).to(images.device).contiguous()
# map = torch.nn.functional.interpolate(second_smallest_vec.reshape(1, 1, dims[0], dims[1]), size=img_size,
# mode='bilinear')
# map -= map.min()
# map /= map.max()
# predominence_map.append(map)
# init_dist = torch.cat(predominence_map, dim=0).detach()
# return init_dist, A, feats, painting
def interpolate_pos_encoding(pos_embed, n_frames, h, w):
N = pos_embed.shape[1]
if N == (h * w * n_frames):
return pos_embed
old_h = old_w = int((N / n_frames) ** 0.5)
patch_pos_embed = pos_embed.view(1, n_frames, old_h, old_w, -1).flatten(0, 1).permute(0, 3, 1, 2)
patch_pos_embed = F.interpolate(
patch_pos_embed,
size=(h, w),
mode='bicubic',
)
return patch_pos_embed.permute(0, 2, 3, 1).flatten(0, 2).unsqueeze(0)
def flow_to_rgb(vec, flow_mag_range=None, white_bg=False):
height, width = vec.shape[:2]
scaling = 50. / (height**2 + width**2)**0.5
direction = (np.arctan2(vec[..., 0], vec[..., 1]) + np.pi) / (2 * np.pi)
norm = np.linalg.norm(vec, axis=-1)
if flow_mag_range is None:
flow_mag_range = norm.min(), norm.max()
magnitude = np.clip((norm - flow_mag_range[0]) * scaling, 0., 1.)
if white_bg == True:
value = np.ones_like(direction)
hsv = np.stack([direction, magnitude, saturation], axis=-1)
else:
saturation = np.ones_like(direction)
hsv = np.stack([direction, saturation , magnitude], axis=-1)
rgb = matplotlib.colors.hsv_to_rgb(hsv)
return rgb |