|
|
|
from typing import Tuple |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torchvision.ops import batched_nms, masks_to_boxes |
|
from detectron2.config import configurable |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head |
|
from detectron2.modeling.backbone import Backbone |
|
from detectron2.modeling.postprocessing import sem_seg_postprocess |
|
from detectron2.structures import Boxes, ImageList, Instances, BitMasks |
|
from detectron2.utils.memory import retry_if_cuda_oom |
|
from mask2former.modeling.criterion import SetCriterion |
|
from mask2former.modeling.matcher import HungarianMatcher |
|
import modeling_pretrain as vmae_tranformers |
|
import matplotlib.pyplot as plt |
|
from detectron2.utils.visualizer import Visualizer |
|
import os |
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
from detectron2.data.datasets import register_coco_instances |
|
|
|
root = os.path.expanduser(os.getenv("DETECTRON2_DATASETS", "datasets")) |
|
register_coco_instances("cls_agnostic_coco", {}, |
|
os.path.join(root, "coco/annotations/coco_cls_agnostic_instances_val2017.json"), |
|
os.path.join(root, "coco/val2017") |
|
) |
|
|
|
|
|
@META_ARCH_REGISTRY.register() |
|
class CWMSegmentPredictorV2(nn.Module): |
|
""" |
|
Main class for mask classification semantic segmentation architectures. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
criterion: nn.Module, |
|
num_queries: int, |
|
object_mask_threshold: float, |
|
overlap_threshold: float, |
|
metadata, |
|
size_divisibility: int, |
|
sem_seg_postprocess_before_inference: bool, |
|
pixel_mean: Tuple[float], |
|
pixel_std: Tuple[float], |
|
|
|
semantic_on: bool, |
|
panoptic_on: bool, |
|
instance_on: bool, |
|
test_topk_per_image: int, |
|
output_dir: str, |
|
): |
|
""" |
|
Args: |
|
backbone: a backbone module, must follow detectron2's backbone interface |
|
sem_seg_head: a module that predicts semantic segmentation from backbone features |
|
criterion: a module that defines the loss |
|
num_queries: int, number of queries |
|
object_mask_threshold: float, threshold to filter query based on classification score |
|
for panoptic segmentation inference |
|
overlap_threshold: overlap threshold used in general inference for panoptic segmentation |
|
metadata: dataset meta, get `thing` and `stuff` category names for panoptic |
|
segmentation inference |
|
size_divisibility: Some backbones require the input height and width to be divisible by a |
|
specific integer. We can use this to override such requirement. |
|
sem_seg_postprocess_before_inference: whether to resize the prediction back |
|
to original input size before semantic segmentation inference or after. |
|
For high-resolution dataset like Mapillary, resizing predictions before |
|
inference will cause OOM error. |
|
pixel_mean, pixel_std: list or tuple with #channels element, representing |
|
the per-channel mean and std to be used to normalize the input image |
|
semantic_on: bool, whether to output semantic segmentation prediction |
|
instance_on: bool, whether to output instance segmentation prediction |
|
panoptic_on: bool, whether to output panoptic segmentation prediction |
|
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image |
|
""" |
|
super().__init__() |
|
|
|
self.criterion = criterion |
|
self.num_queries = num_queries |
|
self.overlap_threshold = overlap_threshold |
|
self.object_mask_threshold = object_mask_threshold |
|
self.metadata = metadata |
|
if size_divisibility < 0: |
|
|
|
size_divisibility = self.backbone.size_divisibility |
|
self.size_divisibility = size_divisibility |
|
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference |
|
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) |
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) |
|
|
|
|
|
self.semantic_on = semantic_on |
|
self.instance_on = instance_on |
|
self.panoptic_on = panoptic_on |
|
self.test_topk_per_image = test_topk_per_image |
|
|
|
if not self.semantic_on: |
|
assert self.sem_seg_postprocess_before_inference |
|
|
|
|
|
self.output_dir = output_dir |
|
if 'cwm' in output_dir: |
|
model_func = vmae_tranformers.base_8x8patch_2frames_1tube_flash |
|
predictor = model_func().cuda() |
|
|
|
load_path = '/ccn2/u/feigelis/model_checkpoints/kevin_checkpoints/' + \ |
|
'fulltrain_kinetics_8x8patch_rotated_table_distributed_with_ddp' + \ |
|
'_copied_from_oldnode/checkpoint-3199.pth' |
|
|
|
did_load = predictor.load_state_dict(torch.load(load_path, map_location=torch.device("cpu"))['model']) |
|
print('Load CWM pretrained predictor', did_load) |
|
self.predictor = predictor.eval().requires_grad_(False) |
|
self.num_patches = self.predictor.encoder.num_patches |
|
self.patch_size = self.predictor.encoder.patch_size[-1] |
|
self.mask_ratio = 0.99 |
|
num_hidden_layers = 4 |
|
hidden_dim = 1024 |
|
input_dim = self.predictor.decoder.embed_dim |
|
|
|
decoder_layers = [torch.nn.Linear(input_dim, hidden_dim), torch.nn.ReLU()] |
|
for i in range(num_hidden_layers): |
|
decoder_layers.append(torch.nn.Linear(hidden_dim, hidden_dim)) |
|
decoder_layers.append(torch.nn.ReLU()) |
|
decoder_layers.append(torch.nn.Linear(hidden_dim, num_queries)) |
|
|
|
self.decoder = torch.nn.Sequential(*decoder_layers).cuda() |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
|
|
|
|
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT |
|
|
|
|
|
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT |
|
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT |
|
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT |
|
|
|
|
|
matcher = HungarianMatcher( |
|
cost_class=class_weight, |
|
cost_mask=mask_weight, |
|
cost_dice=dice_weight, |
|
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, |
|
) |
|
|
|
weight_dict = {"loss_mask": mask_weight, "loss_dice": dice_weight} |
|
|
|
losses = ["masks"] |
|
|
|
criterion = SetCriterion( |
|
num_classes=80, |
|
matcher=matcher, |
|
weight_dict=weight_dict, |
|
eos_coef=no_object_weight, |
|
losses=losses, |
|
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, |
|
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, |
|
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, |
|
) |
|
|
|
return { |
|
"criterion": criterion, |
|
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, |
|
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, |
|
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, |
|
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), |
|
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, |
|
"sem_seg_postprocess_before_inference": ( |
|
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE |
|
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON |
|
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON |
|
), |
|
"pixel_mean": cfg.MODEL.PIXEL_MEAN, |
|
"pixel_std": cfg.MODEL.PIXEL_STD, |
|
|
|
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON, |
|
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON, |
|
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON, |
|
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, |
|
"output_dir": cfg.OUTPUT_DIR, |
|
} |
|
|
|
@property |
|
def device(self): |
|
return self.pixel_mean.device |
|
|
|
def forward(self, batched_inputs): |
|
""" |
|
Args: |
|
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. |
|
Each item in the list contains the inputs for one image. |
|
For now, each item in the list is a dict that contains: |
|
* "image": Tensor, image in (C, H, W) format. |
|
* "instances": per-region ground truth |
|
* Other information that's included in the original dicts, such as: |
|
"height", "width" (int): the output resolution of the model (may be different |
|
from input resolution), used in inference. |
|
Returns: |
|
list[dict]: |
|
each dict has the results for one image. The dict contains the following keys: |
|
|
|
* "sem_seg": |
|
A Tensor that represents the |
|
per-pixel segmentation prediced by the head. |
|
The prediction has shape KxHxW that represents the logits of |
|
each class for each pixel. |
|
* "panoptic_seg": |
|
A tuple that represent panoptic output |
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. |
|
segments_info (list[dict]): Describe each segment in `panoptic_seg`. |
|
Each dict contains keys "id", "category_id", "isthing". |
|
""" |
|
|
|
images = [x["image"].to(self.device) for x in batched_inputs] |
|
images = [(x - self.pixel_mean) / self.pixel_std for x in images] |
|
images = ImageList.from_tensors(images, self.size_divisibility) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=True): |
|
with torch.no_grad(): |
|
if not self.training: |
|
|
|
x = F.interpolate(images.tensor, size=(224, 224), mode="bilinear", align_corners=False) |
|
x = x.to(torch.float16).unsqueeze(2).expand(-1, -1, 2, -1, -1) |
|
else: |
|
x = images.tensor.to(torch.float16).unsqueeze(2).expand(-1, -1, 2, -1, -1) |
|
|
|
|
|
mask = torch.zeros([x.shape[0], self.num_patches]).to(x.device).bool() |
|
mask[:, int(self.num_patches // 2):] = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
feature = self.predictor.encoder(x, mask=mask) |
|
feature = self.predictor.encoder_to_decoder(feature) |
|
|
|
|
|
logits = self.decoder(feature).float() |
|
B, N, _ = logits.shape |
|
pred_masks = logits.view(B, int(N ** 0.5), int(N ** 0.5), self.num_queries).permute(0, 3, 1, |
|
2) |
|
outputs = {"pred_masks": pred_masks} |
|
|
|
if self.training: |
|
|
|
if "instances" in batched_inputs[0]: |
|
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] |
|
targets = self.prepare_targets(gt_instances, images) |
|
else: |
|
targets = None |
|
|
|
|
|
losses = self.criterion(outputs, targets) |
|
|
|
for k in list(losses.keys()): |
|
if k in self.criterion.weight_dict: |
|
losses[k] *= self.criterion.weight_dict[k] |
|
else: |
|
|
|
losses.pop(k) |
|
return losses |
|
else: |
|
|
|
mask_cls_results = torch.ones(x.shape[0], self.num_queries, 81).to(self.device) |
|
mask_pred_results = outputs["pred_masks"] |
|
|
|
mask_pred_results = F.interpolate( |
|
mask_pred_results, |
|
size=(images.tensor.shape[-2], images.tensor.shape[-1]), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
del outputs |
|
|
|
processed_results = [] |
|
for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( |
|
mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes |
|
): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
processed_results.append({}) |
|
|
|
if self.sem_seg_postprocess_before_inference: |
|
mask_pred_result = retry_if_cuda_oom(sem_seg_postprocess)( |
|
mask_pred_result, image_size, height, width |
|
) |
|
mask_cls_result = mask_cls_result.to(mask_pred_result) |
|
|
|
|
|
if self.semantic_on: |
|
r = retry_if_cuda_oom(self.semantic_inference)(mask_cls_result, mask_pred_result) |
|
if not self.sem_seg_postprocess_before_inference: |
|
r = retry_if_cuda_oom(sem_seg_postprocess)(r, image_size, height, width) |
|
processed_results[-1]["sem_seg"] = r |
|
|
|
|
|
if self.panoptic_on: |
|
panoptic_r = retry_if_cuda_oom(self.panoptic_inference)(mask_cls_result, mask_pred_result) |
|
processed_results[-1]["panoptic_seg"] = panoptic_r |
|
|
|
|
|
if self.instance_on: |
|
instance_r, nms_idx = retry_if_cuda_oom(self.instance_inference)(mask_cls_result, mask_pred_result) |
|
processed_results[-1]["instances"] = instance_r |
|
|
|
|
|
''' |
|
|
|
rgb_image = F.interpolate(images.tensor.float(), size=(height, width), mode='bilinear') |
|
visualizer = Visualizer(rgb_image.cpu().detach()[0].permute(1,2,0)) |
|
visualizer = visualizer.draw_instance_predictions(instance_r) |
|
|
|
recon = torch.zeros(1, self.num_patches, self.patch_size ** 2 * 3) |
|
recon[mask] = out.float().cpu().detach() |
|
recon = self.unpatchify(recon[:, int(self.num_patches // 2):]) |
|
recon = recon[0].permute(1, 2, 0).float().clamp(0, 1) |
|
# fig, axs = plt.subplots(1, 7, figsize=(20, 3)) |
|
# |
|
# axs[0].imshow(images.tensor.float()[0].permute(1, 2, 0).cpu().detach()) |
|
# axs[1].imshow(images.tensor.float()[0].permute(1, 2, 0).cpu().detach()) |
|
# # axs[1].imshow(batched_inputs[0]['instances'].gt_masks.argmax(0)) |
|
# axs[2].imshow(recon) |
|
# axs[3].imshow(feature[0].view(28, 28, -1)[..., 0:3].cpu().detach().float()) |
|
# axs[4].imshow(feature[0].view(28, 28, -1)[..., 100:103].cpu().detach().float()) |
|
# axs[5].imshow(feature[0].view(28, 28, -1)[..., 200:203].cpu().detach().float()) |
|
# axs[6].imshow(visualizer.get_image()) |
|
file_name = batched_inputs[0]['file_name'].split('/')[-1].split('.jpg')[0] |
|
# for a in axs: |
|
# a.set_axis_off() |
|
fig, axs = plt.subplots(1, 2, figsize=(16, 6)) |
|
axs[0].imshow(images.tensor.float()[0].permute(1, 2, 0).cpu().detach()) |
|
axs[1].imshow(visualizer.get_image()) |
|
plt.savefig(f"/ccn2/u/honglinc/temp/{file_name}.png", bbox_inches='tight') |
|
|
|
fig, axs = plt.subplots(10, 10, figsize=(10, 10)) |
|
for a in axs: |
|
for _a in a: |
|
_a.set_axis_off() |
|
|
|
for i in range(mask_pred_result.shape[0]): |
|
# print(mask_pred_result.shape, height, width) |
|
mask_area_ratio = mask_pred_result[i].sigmoid().float().flatten().sum() / (height * width) |
|
axs[i // 10, i % 10].imshow(mask_pred_result[i].cpu().detach() > 0) |
|
nms = 1 if i in nms_idx else -1 |
|
axs[i // 10, i % 10].set_title(f'{mask_area_ratio.item():.2f}, {nms}', fontsize=11) |
|
plt.savefig(f"/ccn2/u/honglinc/temp/{file_name}_mask.png", bbox_inches='tight') |
|
''' |
|
|
|
return processed_results |
|
|
|
def prepare_targets(self, targets, images): |
|
h_pad, w_pad = images.tensor.shape[-2:] |
|
new_targets = [] |
|
for targets_per_image in targets: |
|
|
|
gt_masks = targets_per_image.gt_masks |
|
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) |
|
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks |
|
new_targets.append( |
|
{ |
|
"labels": targets_per_image.gt_classes, |
|
"masks": padded_masks, |
|
} |
|
) |
|
return new_targets |
|
|
|
def semantic_inference(self, mask_cls, mask_pred): |
|
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] |
|
mask_pred = mask_pred.sigmoid() |
|
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) |
|
return semseg |
|
|
|
def panoptic_inference(self, mask_cls, mask_pred): |
|
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) |
|
mask_pred = mask_pred.sigmoid() |
|
|
|
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) |
|
cur_scores = scores[keep] |
|
cur_classes = labels[keep] |
|
cur_masks = mask_pred[keep] |
|
cur_mask_cls = mask_cls[keep] |
|
cur_mask_cls = cur_mask_cls[:, :-1] |
|
|
|
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks |
|
|
|
h, w = cur_masks.shape[-2:] |
|
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) |
|
segments_info = [] |
|
|
|
current_segment_id = 0 |
|
|
|
if cur_masks.shape[0] == 0: |
|
|
|
return panoptic_seg, segments_info |
|
else: |
|
|
|
cur_mask_ids = cur_prob_masks.argmax(0) |
|
stuff_memory_list = {} |
|
for k in range(cur_classes.shape[0]): |
|
pred_class = cur_classes[k].item() |
|
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() |
|
mask_area = (cur_mask_ids == k).sum().item() |
|
original_area = (cur_masks[k] >= 0.5).sum().item() |
|
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) |
|
|
|
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: |
|
if mask_area / original_area < self.overlap_threshold: |
|
continue |
|
|
|
|
|
if not isthing: |
|
if int(pred_class) in stuff_memory_list.keys(): |
|
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] |
|
continue |
|
else: |
|
stuff_memory_list[int(pred_class)] = current_segment_id + 1 |
|
|
|
current_segment_id += 1 |
|
panoptic_seg[mask] = current_segment_id |
|
|
|
segments_info.append( |
|
{ |
|
"id": current_segment_id, |
|
"isthing": bool(isthing), |
|
"category_id": int(pred_class), |
|
} |
|
) |
|
|
|
return panoptic_seg, segments_info |
|
|
|
def instance_inference(self, mask_cls, mask_pred): |
|
|
|
image_size = mask_pred.shape[-2:] |
|
|
|
mask_area_ratio = (mask_pred > 0).float().flatten(1, 2).sum(1) / (image_size[0] * image_size[1]) |
|
mask_area_filter = (mask_area_ratio > 0.01) & (mask_area_ratio < 0.9) |
|
mask_pred = mask_pred[mask_area_filter] |
|
original_idx = torch.arange(mask_area_filter.shape[0])[mask_area_filter] |
|
try: |
|
box = masks_to_boxes(mask_pred > 0) |
|
scores = (mask_pred.sigmoid().flatten(1) * (mask_pred > 0).flatten(1)).sum(1) / ( |
|
(mask_pred > 0).flatten(1).sum(1) + 1e-6) |
|
nms_idx = batched_nms(box, scores, torch.zeros(box.shape[0]).long(), 0.3) |
|
|
|
mask_pred = mask_pred[nms_idx] |
|
box = box[nms_idx] |
|
|
|
except Exception as e: |
|
import pdb; |
|
pdb.set_trace() |
|
print(e, mask_pred.shape, mask_area_filter.sum()) |
|
box = torch.zeros(mask_pred.shape[0], 4).to(mask_pred) |
|
|
|
nms_idx = original_idx[nms_idx] |
|
mask_pred = mask_pred.cpu() |
|
|
|
result = Instances(image_size) |
|
|
|
result.pred_masks = (mask_pred > 0).float() |
|
result.pred_boxes = Boxes(box.cpu()) |
|
|
|
|
|
|
|
|
|
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / ( |
|
result.pred_masks.flatten(1).sum(1) + 1e-6) |
|
scores_per_image = torch.ones(mask_pred.size(0)).to(mask_pred.device) |
|
labels_per_image = torch.zeros(mask_pred.size(0)).to(mask_pred.device) |
|
|
|
result.scores = scores_per_image * mask_scores_per_image |
|
result.pred_classes = labels_per_image |
|
return result, nms_idx |
|
|
|
def unpatchify(self, x): |
|
""" |
|
x: (N, L, patch_size**2 *3) |
|
imgs: (N, 3, H, W) |
|
""" |
|
p = self.patch_size |
|
h = w = int(x.shape[1] ** .5) |
|
assert h * w == x.shape[1] |
|
|
|
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3)) |
|
x = torch.einsum('nhwpqc->nchpwq', x) |
|
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p)) |
|
return imgs |