|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from timm.models.layers import drop_path, to_2tuple |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), |
|
**kwargs |
|
} |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
|
|
|
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., attn_head_dim=None, flash_attention=False, k_bias=False, legacy=True, xla_flash=False): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
self.legacy = legacy |
|
|
|
self.xla_flash = xla_flash |
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
|
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
if k_bias: |
|
self.k_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.k_bias = None |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
self.k_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
if self.k_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias)) |
|
else: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
x = F.scaled_dot_product_attention(q, k, v, dropout_p=self.attn_drop.p) |
|
x = x.transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
attn_head_dim=None, in_dim=None, flash_attention=False, k_bias=False, legacy=False, xla_flash=False): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
|
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim, flash_attention=flash_attention, k_bias=k_bias, legacy=legacy, xla_flash=xla_flash) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if (init_values or 0) > 0: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=(16, 16), in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
|
|
self.tubelet_size = int(tubelet_size) |
|
if num_frames is not None: |
|
self.num_frames = int(num_frames) |
|
self.num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) |
|
else: |
|
self.num_frames = None |
|
self.num_patches = None |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv3d(in_channels=in_chans, out_channels=embed_dim, |
|
kernel_size = (self.tubelet_size, patch_size[0],patch_size[1]), |
|
stride=(self.tubelet_size, patch_size[0], patch_size[1])) |
|
|
|
def forward(self, x, **kwargs): |
|
|
|
|
|
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
def get_sinusoid_encoding_table(positions, |
|
d_hid, |
|
apply_sinusoid=True): |
|
''' Sinusoid position encoding table ''' |
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
if isinstance(positions, int): |
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(positions)]) |
|
else: |
|
assert hasattr(positions, '__len__') |
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in positions]) |
|
if apply_sinusoid: |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
|
|
return torch.FloatTensor(sinusoid_table).unsqueeze(0) |
|
|
|
|
|
|