|
import json |
|
import os |
|
import time |
|
from typing import Iterable |
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.data.constants import (IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD) |
|
|
|
import utils |
|
|
|
from datetime import datetime |
|
|
|
|
|
def train_one_epoch(model: torch.nn.Module, |
|
data_loader: Iterable, |
|
optimizer: torch.optim.Optimizer, |
|
device: torch.device, |
|
epoch: int, |
|
loss_scaler, |
|
start_steps=None, |
|
lr_schedule_values=None, |
|
wd_schedule_values=None, |
|
global_rank=None, |
|
args=None, |
|
loss_func = nn.MSELoss(), |
|
): |
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
|
|
if args.eval: |
|
model.eval() |
|
else: |
|
model.train() |
|
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
|
|
header = f'Epoch [{epoch}]' |
|
patch_size = model.module.encoder.patch_size[-2:] |
|
tubelet_size = model.module.encoder.patch_size[0] |
|
mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, :, None, None, None] |
|
std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, :, None, None, None] |
|
|
|
for step, batch in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)): |
|
|
|
|
|
it = start_steps + step |
|
if (lr_schedule_values is not None or wd_schedule_values is not None) and (step % args.accum_iter == 0): |
|
for i, param_group in enumerate(optimizer.param_groups): |
|
if lr_schedule_values is not None: |
|
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"] |
|
if wd_schedule_values is not None and param_group["weight_decay"] > 0: |
|
param_group["weight_decay"] = wd_schedule_values[it] |
|
|
|
|
|
videos, bool_masked_pos = batch |
|
videos = videos.to(device, non_blocking=True) |
|
bool_masked_pos = bool_masked_pos.to(device, non_blocking=True).flatten(1) |
|
|
|
|
|
with torch.no_grad(): |
|
unnorm_videos = videos * std + mean |
|
videos_patch = utils.patchify(unnorm_videos, tubelet_size, patch_size) |
|
B, _, C = videos_patch.shape |
|
labels = videos_patch[bool_masked_pos].reshape(B, -1, C) |
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=True): |
|
outputs = model(videos, bool_masked_pos) |
|
loss = loss_func(input=outputs, target=labels) |
|
|
|
loss_value = loss.item() |
|
|
|
|
|
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order |
|
loss /= args.accum_iter |
|
loss_scaler(loss, optimizer, clip_grad=None, |
|
parameters=model.parameters(), create_graph=is_second_order, |
|
update_grad=(step + 1) % args.accum_iter == 0) |
|
|
|
torch.cuda.synchronize() |
|
metric_logger.update(loss=loss_value) |
|
|
|
if (step + 1) % args.accum_iter == 0: |
|
optimizer.zero_grad() |
|
|
|
lr = optimizer.param_groups[0]["lr"] |
|
metric_logger.update(lr=lr) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
print("Averaged stats:", metric_logger) |
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|