Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
import torch.nn as nn | |
from .dist_utils import download_cached_file | |
from .Qformer import BertConfig, BertLMHeadModel | |
from .eva_vit import create_eva_vit_g | |
from transformers import BertTokenizer | |
class Blip2Base(nn.Module): | |
def init_tokenizer(cls): | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
tokenizer.add_special_tokens({"bos_token": "[DEC]"}) | |
return tokenizer | |
def device(self): | |
return list(self.parameters())[0].device | |
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2): | |
encoder_config = BertConfig.from_pretrained("bert-base-uncased") | |
encoder_config.encoder_width = vision_width | |
# insert cross-attention layer every other block | |
encoder_config.add_cross_attention = True | |
encoder_config.cross_attention_freq = cross_attention_freq | |
encoder_config.query_length = num_query_token | |
encoder_config.is_decoder = True | |
Qformer = BertLMHeadModel(config=encoder_config) | |
query_tokens = nn.Parameter( | |
torch.zeros(1, num_query_token, encoder_config.hidden_size) | |
) | |
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range) | |
return Qformer, query_tokens | |
def init_vision_encoder( | |
cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision | |
): | |
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4" | |
visual_encoder = create_eva_vit_g( | |
img_size, drop_path_rate, use_grad_checkpoint, precision | |
) | |
ln_vision = LayerNorm(visual_encoder.num_features) | |
return visual_encoder, ln_vision | |
def load_from_pretrained(self, url_or_filename): | |
cached_file = download_cached_file( | |
url_or_filename, check_hash=False, progress=True | |
) | |
checkpoint = torch.load(cached_file, map_location="cpu") | |
state_dict = checkpoint["model"] | |
msg = self.load_state_dict(state_dict, strict=False) | |
# logging.info("Missing keys {}".format(msg.missing_keys)) | |
logging.info("load checkpoint from %s" % url_or_filename) | |
return msg | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.type(torch.float32)) | |
return ret.type(orig_type) | |