GATConvTest / app.py
NimaKL's picture
Update app.py
f156242 verified
raw
history blame
4.33 kB
import gradio as gr
import torch
import pandas as pd
import numpy as np
from torch_geometric.data import Data
from torch_geometric.nn import GATConv
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
# Define the GATConv model architecture
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
self.dropout1 = torch.nn.Dropout(0.45)
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
def forward(self, x, edge_index, edge_attr=None):
x = self.conv1(x, edge_index, edge_attr)
x = torch.relu(x)
x = dropout1(x)
x = self.conv2(x, edge_index, edge_attr)
return x
# Load the dataset and the GATConv model
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
# Load the BERT-based sentence transformer model
model_bert = SentenceTransformer("all-mpnet-base-v2")
# Ensure the DataFrame is loaded properly
try:
df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip')
except Exception as e:
print(f"Error reading JSON file: {e}")
# Generate GNN-based embeddings
with torch.no_grad():
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
# Function to find the most similar video and recommend the top 10 based on GNN embeddings
def get_similar_and_recommend(input_text):
# Find the most similar video based on input text
embeddings_matrix = np.array(df["embeddings"].tolist())
input_embedding = model_bert.encode([input_text])[0]
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
# Modify the similarity scores based on user input
user_keywords = input_text.split() # Create a list of keywords from user input
weight = 1.0 # Initial weight factor
for keyword in user_keywords:
if keyword.lower() in df["title"].str.lower().tolist(): # Check if the keyword is in any title
weight += 0.1 # Increase weight for matching keyword
weighted_similarities = similarities * weight # Apply the weight to the similarity score
most_similar_index = np.argmax(weighted_similarities) # Use weighted scores to find most similar
# Get all features of the most similar video
most_similar_video_features = df.iloc[most_similar_index].to_dict()
# Recommend the top 10 videos based on GNN embeddings and dot product
def recommend_next_10_videos(given_video_index, all_video_embeddings):
dot_products = [
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
for i in range(all_video_embeddings.shape[0])
]
dot_products[given_video_index] = -float("inf")
top_10_indices = np.argsort(dot_products)[::-1][:10]
return [df.iloc[idx].to_dict() for idx in top_10_indices]
top_10_recommended_videos_features = recommend_next_10_videos(most_similar_index, all_video_embeddings)
# Exclude unwanted features for recommended videos
for recommended_video in top_10_recommended_videos_features:
if "text_for_embedding" in recommended_video:
del recommended_video["text_for_embedding"]
if "embeddings" in recommended_video:
del recommended_video["embeddings"]
# Create the output JSON with all features and the search context
output = {
"search_context": {
"input_text": input_text,
"weight": weight, # The applied weight based on user input
},
"most_similar_video": most_similar_video_features,
"top_10_recommended_videos": top_10_recommended_videos_features,
}
return output
# Update the Gradio interface to output JSON with weighted recommendations
interface = gr.Interface(
fn=get_similar_and_recommend,
inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
outputs=gr.JSON(),
title="Video Recommendation System with GNN-based Recommendations",
description="Enter text to find the most similar video and get top 10 recommended videos with search context and user-influenced weight factor.",
)
interface.launch()