NimaKL commited on
Commit
0f9515d
·
verified ·
1 Parent(s): f02ce94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -25
app.py CHANGED
@@ -62,48 +62,39 @@ def get_similar_and_recommend(input_text):
62
  similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
63
  most_similar_index = np.argmax(similarities)
64
 
65
- most_similar_video = {
66
- "title": df["title"].iloc[most_similar_index],
67
- "description": df["description"].iloc[most_similar_index],
68
- "similarity_score": similarities[most_similar_index],
69
- }
70
 
71
  # Recommend the top 10 videos based on GNN embeddings and dot product
72
  def recommend_next_10_videos(given_video_index, all_video_embeddings):
73
  dot_products = [
74
- torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
75
  for i in range(all_video_embeddings.shape[0])
76
  ]
77
  dot_products[given_video_index] = -float("inf")
78
 
79
  top_10_indices = np.argsort(dot_products)[::-1][:10]
80
- recommendations = [df["title"].iloc[idx] for idx in top_10_indices]
81
- return recommendations
82
 
83
- top_10_recommendations = recommend_next_10_videos(
84
  most_similar_index, all_video_embeddings
85
  )
86
 
87
- return (
88
- most_similar_video["title"],
89
- most_similar_video["description"],
90
- most_similar_video["similarity_score"],
91
- top_10_recommendations,
92
- )
 
93
 
94
- # Update the Gradio interface to fix the output type
95
  interface = gr.Interface(
96
  fn=get_similar_and_recommend,
97
  inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
98
- outputs=[
99
- gr.components.Textbox(label="Video Title"),
100
- gr.components.Textbox(label="Video Description"),
101
- gr.components.Textbox(label="Similarity Score"),
102
- gr.components.Textbox(label="Top 10 Recommended Videos", lines=10), # Handle a list
103
- ],
104
  title="Video Recommendation System with GNN-based Recommendations",
105
- description="Enter text to find the most similar video and get the top 10 recommended videos based on dot product and GNN embeddings.",
106
  )
107
 
108
- # Launch the Gradio interface
109
- interface.launch()
 
62
  similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
63
  most_similar_index = np.argmax(similarities)
64
 
65
+ # Get all features of the most similar video
66
+ most_similar_video_features = df.iloc[most_similar_index].to_dict()
 
 
 
67
 
68
  # Recommend the top 10 videos based on GNN embeddings and dot product
69
  def recommend_next_10_videos(given_video_index, all_video_embeddings):
70
  dot_products = [
71
+ torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
72
  for i in range(all_video_embeddings.shape[0])
73
  ]
74
  dot_products[given_video_index] = -float("inf")
75
 
76
  top_10_indices = np.argsort(dot_products)[::-1][:10]
77
+ return [df.iloc[idx].to_dict() for idx in top_10_indices]
 
78
 
79
+ top_10_recommended_videos_features = recommend_next_10_videos(
80
  most_similar_index, all_video_embeddings
81
  )
82
 
83
+ # Create the output JSON with all features
84
+ output = {
85
+ "most_similar_video": most_similar_video_features,
86
+ "top_10_recommended_videos": top_10_recommended_videos_features,
87
+ }
88
+
89
+ return output
90
 
91
+ # Update the Gradio interface to output a JSON object containing all features
92
  interface = gr.Interface(
93
  fn=get_similar_and_recommend,
94
  inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
95
+ outputs=gr.JSON(),
 
 
 
 
 
96
  title="Video Recommendation System with GNN-based Recommendations",
97
+ description="Enter text to find the most similar video and get the top 10 recommended videos with all features in a JSON object.",
98
  )
99
 
100
+ interface.launch()