Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -62,48 +62,39 @@ def get_similar_and_recommend(input_text):
|
|
62 |
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
|
63 |
most_similar_index = np.argmax(similarities)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
"description": df["description"].iloc[most_similar_index],
|
68 |
-
"similarity_score": similarities[most_similar_index],
|
69 |
-
}
|
70 |
|
71 |
# Recommend the top 10 videos based on GNN embeddings and dot product
|
72 |
def recommend_next_10_videos(given_video_index, all_video_embeddings):
|
73 |
dot_products = [
|
74 |
-
torch.dot(all_video_embeddings[given_video_index]
|
75 |
for i in range(all_video_embeddings.shape[0])
|
76 |
]
|
77 |
dot_products[given_video_index] = -float("inf")
|
78 |
|
79 |
top_10_indices = np.argsort(dot_products)[::-1][:10]
|
80 |
-
|
81 |
-
return recommendations
|
82 |
|
83 |
-
|
84 |
most_similar_index, all_video_embeddings
|
85 |
)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
most_similar_video
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
93 |
|
94 |
-
# Update the Gradio interface to
|
95 |
interface = gr.Interface(
|
96 |
fn=get_similar_and_recommend,
|
97 |
inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
|
98 |
-
outputs=
|
99 |
-
gr.components.Textbox(label="Video Title"),
|
100 |
-
gr.components.Textbox(label="Video Description"),
|
101 |
-
gr.components.Textbox(label="Similarity Score"),
|
102 |
-
gr.components.Textbox(label="Top 10 Recommended Videos", lines=10), # Handle a list
|
103 |
-
],
|
104 |
title="Video Recommendation System with GNN-based Recommendations",
|
105 |
-
description="Enter text to find the most similar video and get the top 10 recommended videos
|
106 |
)
|
107 |
|
108 |
-
|
109 |
-
interface.launch()
|
|
|
62 |
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
|
63 |
most_similar_index = np.argmax(similarities)
|
64 |
|
65 |
+
# Get all features of the most similar video
|
66 |
+
most_similar_video_features = df.iloc[most_similar_index].to_dict()
|
|
|
|
|
|
|
67 |
|
68 |
# Recommend the top 10 videos based on GNN embeddings and dot product
|
69 |
def recommend_next_10_videos(given_video_index, all_video_embeddings):
|
70 |
dot_products = [
|
71 |
+
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
|
72 |
for i in range(all_video_embeddings.shape[0])
|
73 |
]
|
74 |
dot_products[given_video_index] = -float("inf")
|
75 |
|
76 |
top_10_indices = np.argsort(dot_products)[::-1][:10]
|
77 |
+
return [df.iloc[idx].to_dict() for idx in top_10_indices]
|
|
|
78 |
|
79 |
+
top_10_recommended_videos_features = recommend_next_10_videos(
|
80 |
most_similar_index, all_video_embeddings
|
81 |
)
|
82 |
|
83 |
+
# Create the output JSON with all features
|
84 |
+
output = {
|
85 |
+
"most_similar_video": most_similar_video_features,
|
86 |
+
"top_10_recommended_videos": top_10_recommended_videos_features,
|
87 |
+
}
|
88 |
+
|
89 |
+
return output
|
90 |
|
91 |
+
# Update the Gradio interface to output a JSON object containing all features
|
92 |
interface = gr.Interface(
|
93 |
fn=get_similar_and_recommend,
|
94 |
inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
|
95 |
+
outputs=gr.JSON(),
|
|
|
|
|
|
|
|
|
|
|
96 |
title="Video Recommendation System with GNN-based Recommendations",
|
97 |
+
description="Enter text to find the most similar video and get the top 10 recommended videos with all features in a JSON object.",
|
98 |
)
|
99 |
|
100 |
+
interface.launch()
|
|