NimaKL commited on
Commit
20ae2d2
·
verified ·
1 Parent(s): 222fb9e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -19
app.py CHANGED
@@ -6,6 +6,7 @@ from torch_geometric.data import Data
6
  from torch_geometric.nn import GATConv
7
  from sentence_transformers import SentenceTransformer
8
  from sklearn.metrics.pairwise import cosine_similarity
 
9
  # Define the GATConv model architecture
10
  class ModeratelySimplifiedGATConvModel(torch.nn.Module):
11
  def __init__(self, in_channels, hidden_channels, out_channels):
@@ -60,33 +61,42 @@ def get_similar_and_recommend(input_text):
60
  input_embedding = model_bert.encode([input_text])[0]
61
  similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
62
 
63
- # Modify the similarity scores based on user input
64
- user_keywords = input_text.split() # Create a list of keywords from user input
65
- weight = 1.0 # Initial weight factor
66
 
67
- for keyword in user_keywords:
68
- if keyword.lower() in df["title"].str.lower().tolist(): # Check if the keyword is in any title
69
- weight += 0.1 # Increase weight for matching keyword
 
 
 
 
 
 
 
70
 
71
- weighted_similarities = similarities * weight # Apply the weight to the similarity score
72
 
73
- most_similar_index = np.argmax(weighted_similarities) # Use weighted scores to find most similar
 
 
74
 
75
- # Get all features of the most similar video
76
- most_similar_video_features = df.iloc[most_similar_index].to_dict()
 
77
 
78
- # Recommend the top 10 videos based on GNN embeddings and dot product
79
- def recommend_next_10_videos(given_video_index, all_video_embeddings):
80
  dot_products = [
81
- torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
82
  for i in range(all_video_embeddings.shape[0])
83
  ]
84
  dot_products[given_video_index] = -float("inf")
85
 
86
- top_10_indices = np.argsort(dot_products)[::-1][:10]
87
  return [df.iloc[idx].to_dict() for idx in top_10_indices]
88
 
89
- top_10_recommended_videos_features = recommend_next_10_videos(most_similar_index, all_video_embeddings)
 
 
90
 
91
  # Exclude unwanted features for recommended videos
92
  for recommended_video in top_10_recommended_videos_features:
@@ -95,11 +105,11 @@ def get_similar_and_recommend(input_text):
95
  if "embeddings" in recommended_video:
96
  del recommended_video["embeddings"]
97
 
98
- # Create the output JSON with all features and the search context
99
  output = {
100
  "search_context": {
101
  "input_text": input_text,
102
- "weight": weight, # The applied weight based on user input
103
  },
104
  "most_similar_video": most_similar_video_features,
105
  "top_10_recommended_videos": top_10_recommended_videos_features,
@@ -107,13 +117,13 @@ def get_similar_and_recommend(input_text):
107
 
108
  return output
109
 
110
- # Update the Gradio interface to output JSON with weighted recommendations
111
  interface = gr.Interface(
112
  fn=get_similar_and_recommend,
113
  inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
114
  outputs=gr.JSON(),
115
  title="Video Recommendation System with GNN-based Recommendations",
116
- description="Enter text to find the most similar video and get top 10 recommended videos with search context and user-influenced weight factor.",
117
  )
118
 
119
  interface.launch()
 
6
  from torch_geometric.nn import GATConv
7
  from sentence_transformers import SentenceTransformer
8
  from sklearn.metrics.pairwise import cosine_similarity
9
+
10
  # Define the GATConv model architecture
11
  class ModeratelySimplifiedGATConvModel(torch.nn.Module):
12
  def __init__(self, in_channels, hidden_channels, out_channels):
 
61
  input_embedding = model_bert.encode([input_text])[0]
62
  similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
63
 
64
+ most_similar_index = np.argmax(similarities) # Use unweighted scores for the most similar video
 
 
65
 
66
+ # Get all features of the most similar video
67
+ most_similar_video_features = df.iloc[most_similar_index].to_dict()
68
+ # Get all features of the most similar video
69
+ most_similar_video_features = df.iloc[most_similar_index].to_dict()
70
+
71
+ # Remove the "embeddings" key from most_similar_video_features
72
+ if "embeddings" in most_similar_video_features:
73
+ del most_similar_video_features["embeddings"]
74
+ if "text_for_embedding" in most_similar_video_features:
75
+ del most_similar_video_features["text_for_embedding"]
76
 
 
77
 
78
+ # Apply search context weight for GNN recommendations
79
+ user_keywords = input_text.split() # Create a list of keywords from user input
80
+ weight = 1.0 # Initial weight factor
81
 
82
+ for keyword in user_keywords:
83
+ if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords
84
+ weight += 0.1 # Increase weight for each match
85
 
86
+ # Recommend the top 10 videos based on GNN embeddings and weighted dot product
87
+ def recommend_next_10_videos(given_video_index, all_video_embeddings, weight):
88
  dot_products = [
89
+ torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i]) * weight
90
  for i in range(all_video_embeddings.shape[0])
91
  ]
92
  dot_products[given_video_index] = -float("inf")
93
 
94
+ top_10_indices = np.argsort(dot_products)[[::-1][:10]
95
  return [df.iloc[idx].to_dict() for idx in top_10_indices]
96
 
97
+ top_10_recommended_videos_features = recommend_next_10_videos(
98
+ most_similar_index, all_video_embeddings, weight
99
+ )
100
 
101
  # Exclude unwanted features for recommended videos
102
  for recommended_video in top_10_recommended_videos_features:
 
105
  if "embeddings" in recommended_video:
106
  del recommended_video["embeddings"]
107
 
108
+ # Create the output JSON with the search context
109
  output = {
110
  "search_context": {
111
  "input_text": input_text,
112
+ "weight": weight, # Weight applied to the GNN recommendations
113
  },
114
  "most_similar_video": most_similar_video_features,
115
  "top_10_recommended_videos": top_10_recommended_videos_features,
 
117
 
118
  return output
119
 
120
+ # Update the Gradio interface to output JSON with search context for GNN recommendations
121
  interface = gr.Interface(
122
  fn=get_similar_and_recommend,
123
  inputs=gr.Textbox(label="Enter Text to Find Most Similar Video"),
124
  outputs=gr.JSON(),
125
  title="Video Recommendation System with GNN-based Recommendations",
126
+ description="Enter text to find the most similar video and get top 10 recommended videos with search context applied to GNN results.",
127
  )
128
 
129
  interface.launch()