NimaKL commited on
Commit
58bda3d
·
verified ·
1 Parent(s): ed9de03

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import pandas as pd
4
+ import numpy as np
5
+ from torch_geometric.data import Data
6
+ from torch_geometric.nn import GATConv
7
+ from sentence_transformers import SentenceTransformer
8
+ from sklearn.metrics.pairwise import cosine_similarity
9
+
10
+ # Define the GATConv model architecture
11
+ class ModeratelySimplifiedGATConvModel(torch.nn.Module):
12
+ def __init__(self, in_channels, hidden_channels, out_channels):
13
+ super().__init__()
14
+ self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
15
+ self.dropout1 = torch.nn.Dropout(0.45)
16
+ self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
17
+
18
+ def forward(self, x, edge_index, edge_attr=None):
19
+ x = self.conv1(x, edge_index, edge_attr)
20
+ x = torch.relu(x)
21
+ x = self.dropout1(x)
22
+ x = self.conv2(x, edge_index, edge_attr)
23
+ return x
24
+
25
+ # Load the dataset and the GATConv model
26
+ data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
27
+
28
+ # Correct the state dictionary's key names
29
+ original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
30
+ corrected_state_dict = {}
31
+ for key, value in original_state_dict.items():
32
+ if "lin.weight" in key:
33
+ corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
34
+ corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
35
+ else:
36
+ corrected_state_dict[key] = value
37
+
38
+ # Initialize the GATConv model with the corrected state dictionary
39
+ gatconv_model = ModeratelySimplifiedGATConvModel(
40
+ in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
41
+ )
42
+ gatconv_model.load_state_dict(corrected_state_dict)
43
+
44
+ # Load the BERT-based sentence transformer model
45
+ model_bert = SentenceTransformer("all-mpnet-base-v2")
46
+
47
+ # Ensure the DataFrame is loaded properly
48
+ df = pd.read_feather("EmbeddedCombined.feather")
49
+
50
+ # Generate GNN-based embeddings
51
+ with torch.no_grad():
52
+ all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
53
+
54
+ # Function to find the most similar video and recommend the top 10 based on GNN embeddings
55
+ def get_similar_and_recommend(input_text):
56
+ # Find the most similar video based on input text
57
+ embeddings_matrix = np.array(df["embeddings"].tolist())
58
+ input_embedding = model_bert.encode([input_text])[0]
59
+ similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
60
+ most_similar_index = np.argmax(similarities)
61
+
62
+ most_similar_video = {
63
+ "title": df["title"].iloc[most_similar_index],
64
+ "description": df["description"].iloc[most_similar_index],
65
+ "similarity_score": similarities[most_similar_index],
66
+ }
67
+
68
+ # Recommend the top 10 videos based on GNN embeddings and dot product
69
+ def recommend_next_10_videos(given_video_index, all_video_embeddings):
70
+ dot_products = [
71
+ torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
72
+ for i in range(all_video_embeddings.shape[0])
73
+ ]
74
+ dot_products[given_video_index] = -float("inf")
75
+
76
+ top_10_indices = np.argsort(dot_products)[::-1][:10]
77
+ recommendations = [df["title"].iloc[idx] for idx in top_10_indices]
78
+ return recommendations
79
+
80
+ top_10_recommendations = recommend_next_10_videos(
81
+ most_similar_index, all_video_embeddings
82
+ )
83
+
84
+ return (
85
+ most_similar_video["title"],
86
+ most_similar_video["description"],
87
+ most_similar_video["similarity_score"],
88
+ top_10_recommendations,
89
+ )
90
+
91
+ # Update the Gradio interface to fix the output type
92
+ interface = gr.Interface(
93
+ fn=get_similar_and_recommend,
94
+ inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
95
+ outputs=[
96
+ gr.components.Textbox(label="Video Title"),
97
+ gr.components.Textbox(label="Video Description"),
98
+ gr.components.Textbox(label="Similarity Score"),
99
+ gr.components.Textbox(label="Top 10 Recommended Videos", lines=10), # Handle a list
100
+ ],
101
+ title="Video Recommendation System with GNN-based Recommendations",
102
+ description="Enter text to find the most similar video and get the top 10 recommended videos based on dot product and GNN embeddings.",
103
+ )
104
+
105
+ # Launch the Gradio interface
106
+ interface.launch()