Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
from torch_geometric.data import Data
|
6 |
+
from torch_geometric.nn import GATConv
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
|
10 |
+
# Define the GATConv model architecture
|
11 |
+
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
|
12 |
+
def __init__(self, in_channels, hidden_channels, out_channels):
|
13 |
+
super().__init__()
|
14 |
+
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
|
15 |
+
self.dropout1 = torch.nn.Dropout(0.45)
|
16 |
+
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
|
17 |
+
|
18 |
+
def forward(self, x, edge_index, edge_attr=None):
|
19 |
+
x = self.conv1(x, edge_index, edge_attr)
|
20 |
+
x = torch.relu(x)
|
21 |
+
x = self.dropout1(x)
|
22 |
+
x = self.conv2(x, edge_index, edge_attr)
|
23 |
+
return x
|
24 |
+
|
25 |
+
# Load the dataset and the GATConv model
|
26 |
+
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
|
27 |
+
|
28 |
+
# Correct the state dictionary's key names
|
29 |
+
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
|
30 |
+
corrected_state_dict = {}
|
31 |
+
for key, value in original_state_dict.items():
|
32 |
+
if "lin.weight" in key:
|
33 |
+
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
|
34 |
+
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
|
35 |
+
else:
|
36 |
+
corrected_state_dict[key] = value
|
37 |
+
|
38 |
+
# Initialize the GATConv model with the corrected state dictionary
|
39 |
+
gatconv_model = ModeratelySimplifiedGATConvModel(
|
40 |
+
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
|
41 |
+
)
|
42 |
+
gatconv_model.load_state_dict(corrected_state_dict)
|
43 |
+
|
44 |
+
# Load the BERT-based sentence transformer model
|
45 |
+
model_bert = SentenceTransformer("all-mpnet-base-v2")
|
46 |
+
|
47 |
+
# Ensure the DataFrame is loaded properly
|
48 |
+
df = pd.read_feather("EmbeddedCombined.feather")
|
49 |
+
|
50 |
+
# Generate GNN-based embeddings
|
51 |
+
with torch.no_grad():
|
52 |
+
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
|
53 |
+
|
54 |
+
# Function to find the most similar video and recommend the top 10 based on GNN embeddings
|
55 |
+
def get_similar_and_recommend(input_text):
|
56 |
+
# Find the most similar video based on input text
|
57 |
+
embeddings_matrix = np.array(df["embeddings"].tolist())
|
58 |
+
input_embedding = model_bert.encode([input_text])[0]
|
59 |
+
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
|
60 |
+
most_similar_index = np.argmax(similarities)
|
61 |
+
|
62 |
+
most_similar_video = {
|
63 |
+
"title": df["title"].iloc[most_similar_index],
|
64 |
+
"description": df["description"].iloc[most_similar_index],
|
65 |
+
"similarity_score": similarities[most_similar_index],
|
66 |
+
}
|
67 |
+
|
68 |
+
# Recommend the top 10 videos based on GNN embeddings and dot product
|
69 |
+
def recommend_next_10_videos(given_video_index, all_video_embeddings):
|
70 |
+
dot_products = [
|
71 |
+
torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
|
72 |
+
for i in range(all_video_embeddings.shape[0])
|
73 |
+
]
|
74 |
+
dot_products[given_video_index] = -float("inf")
|
75 |
+
|
76 |
+
top_10_indices = np.argsort(dot_products)[::-1][:10]
|
77 |
+
recommendations = [df["title"].iloc[idx] for idx in top_10_indices]
|
78 |
+
return recommendations
|
79 |
+
|
80 |
+
top_10_recommendations = recommend_next_10_videos(
|
81 |
+
most_similar_index, all_video_embeddings
|
82 |
+
)
|
83 |
+
|
84 |
+
return (
|
85 |
+
most_similar_video["title"],
|
86 |
+
most_similar_video["description"],
|
87 |
+
most_similar_video["similarity_score"],
|
88 |
+
top_10_recommendations,
|
89 |
+
)
|
90 |
+
|
91 |
+
# Update the Gradio interface to fix the output type
|
92 |
+
interface = gr.Interface(
|
93 |
+
fn=get_similar_and_recommend,
|
94 |
+
inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
|
95 |
+
outputs=[
|
96 |
+
gr.components.Textbox(label="Video Title"),
|
97 |
+
gr.components.Textbox(label="Video Description"),
|
98 |
+
gr.components.Textbox(label="Similarity Score"),
|
99 |
+
gr.components.Textbox(label="Top 10 Recommended Videos", lines=10), # Handle a list
|
100 |
+
],
|
101 |
+
title="Video Recommendation System with GNN-based Recommendations",
|
102 |
+
description="Enter text to find the most similar video and get the top 10 recommended videos based on dot product and GNN embeddings.",
|
103 |
+
)
|
104 |
+
|
105 |
+
# Launch the Gradio interface
|
106 |
+
interface.launch()
|