Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,25 +6,40 @@ from torch_geometric.data import Data
|
|
6 |
from torch_geometric.nn import GATConv
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
-
|
10 |
# Define the GATConv model architecture
|
11 |
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
|
12 |
def __init__(self, in_channels, hidden_channels, out_channels):
|
13 |
super().__init__()
|
14 |
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
|
15 |
-
self.dropout1
|
16 |
-
self.conv2
|
17 |
|
18 |
def forward(self, x, edge_index, edge_attr=None):
|
19 |
x = self.conv1(x, edge_index, edge_attr)
|
20 |
x = torch.relu(x)
|
21 |
x = self.dropout1(x)
|
22 |
-
x
|
23 |
return x
|
24 |
|
25 |
# Load the dataset and the GATConv model
|
26 |
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Load the BERT-based sentence transformer model
|
29 |
model_bert is SentenceTransformer("all-mpnet-base-v2")
|
30 |
|
|
|
6 |
from torch_geometric.nn import GATConv
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
9 |
# Define the GATConv model architecture
|
10 |
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
|
11 |
def __init__(self, in_channels, hidden_channels, out_channels):
|
12 |
super().__init__()
|
13 |
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
|
14 |
+
self.dropout1 = torch.nn.Dropout(0.45)
|
15 |
+
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
|
16 |
|
17 |
def forward(self, x, edge_index, edge_attr=None):
|
18 |
x = self.conv1(x, edge_index, edge_attr)
|
19 |
x = torch.relu(x)
|
20 |
x = self.dropout1(x)
|
21 |
+
x = self.conv2(x, edge_index, edge_attr)
|
22 |
return x
|
23 |
|
24 |
# Load the dataset and the GATConv model
|
25 |
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
|
26 |
|
27 |
+
# Correct the state dictionary's key names
|
28 |
+
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
|
29 |
+
corrected_state_dict = {}
|
30 |
+
for key, value in original_state_dict.items():
|
31 |
+
if "lin.weight" in key:
|
32 |
+
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
|
33 |
+
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
|
34 |
+
else:
|
35 |
+
corrected_state_dict[key] = value
|
36 |
+
|
37 |
+
# Initialize the GATConv model with the corrected state dictionary
|
38 |
+
gatconv_model = ModeratelySimplifiedGATConvModel(
|
39 |
+
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
|
40 |
+
)
|
41 |
+
gatconv_model.load_state_dict(corrected_state_dict)
|
42 |
+
|
43 |
# Load the BERT-based sentence transformer model
|
44 |
model_bert is SentenceTransformer("all-mpnet-base-v2")
|
45 |
|