Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,30 @@
|
|
1 |
-
import
|
|
|
2 |
import torch
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
|
|
5 |
from torch_geometric.data import Data
|
6 |
from torch_geometric.nn import GATConv
|
7 |
-
from sentence_transformers import SentenceTransformer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
|
12 |
def __init__(self, in_channels, hidden_channels, out_channels):
|
13 |
super().__init__()
|
@@ -22,38 +39,19 @@ class ModeratelySimplifiedGATConvModel(torch.nn.Module):
|
|
22 |
x = self.conv2(x, edge_index, edge_attr)
|
23 |
return x
|
24 |
|
25 |
-
#
|
26 |
-
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
|
27 |
-
|
28 |
-
# Correct the state dictionary's key names
|
29 |
-
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
|
30 |
-
corrected_state_dict = {}
|
31 |
-
for key, value in original_state_dict.items():
|
32 |
-
if "lin.weight" in key:
|
33 |
-
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
|
34 |
-
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
|
35 |
-
else:
|
36 |
-
corrected_state_dict[key] = value
|
37 |
-
|
38 |
-
# Initialize the GATConv model with the corrected state dictionary
|
39 |
gatconv_model = ModeratelySimplifiedGATConvModel(
|
40 |
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
|
41 |
)
|
42 |
gatconv_model.load_state_dict(corrected_state_dict)
|
43 |
|
44 |
-
# Load the BERT-based sentence transformer model
|
45 |
model_bert = SentenceTransformer("all-mpnet-base-v2")
|
46 |
|
47 |
-
# Ensure
|
48 |
df = pd.read_feather("EmbeddedCombined.feather")
|
49 |
|
50 |
-
#
|
51 |
-
with torch.no_grad():
|
52 |
-
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
|
53 |
-
|
54 |
-
# Function to find the most similar video and recommend the top 10 based on GNN embeddings
|
55 |
def get_similar_and_recommend(input_text):
|
56 |
-
# Find the most similar video based on input text
|
57 |
embeddings_matrix = np.array(df["embeddings"].tolist())
|
58 |
input_embedding = model_bert.encode([input_text])[0]
|
59 |
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
|
@@ -65,7 +63,7 @@ def get_similar_and_recommend(input_text):
|
|
65 |
"similarity_score": similarities[most_similar_index],
|
66 |
}
|
67 |
|
68 |
-
#
|
69 |
def recommend_next_10_videos(given_video_index, all_video_embeddings):
|
70 |
dot_products = [
|
71 |
torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
|
@@ -78,29 +76,23 @@ def get_similar_and_recommend(input_text):
|
|
78 |
return recommendations
|
79 |
|
80 |
top_10_recommendations = recommend_next_10_videos(
|
81 |
-
most_similar_index,
|
82 |
)
|
83 |
|
84 |
-
return
|
85 |
-
most_similar_video["title"],
|
86 |
-
|
87 |
-
|
88 |
-
top_10_recommendations,
|
89 |
-
)
|
90 |
-
|
91 |
-
# Update the Gradio interface to fix the output type
|
92 |
-
interface = gr.Interface(
|
93 |
-
fn=get_similar_and_recommend,
|
94 |
-
inputs=gr.components.Textbox(label="Enter Text to Find Most Similar Video"),
|
95 |
-
outputs=[
|
96 |
-
gr.components.Textbox(label="Video Title"),
|
97 |
-
gr.components.Textbox(label="Video Description"),
|
98 |
-
gr.components.Textbox(label="Similarity Score"),
|
99 |
-
gr.components.Textbox(label="Top 10 Recommended Videos", lines=10), # Handle a list
|
100 |
-
],
|
101 |
-
title="Video Recommendation System with GNN-based Recommendations",
|
102 |
-
description="Enter text to find the most similar video and get the top 10 recommended videos based on dot product and GNN embeddings.",
|
103 |
-
)
|
104 |
|
105 |
-
#
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
import torch
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
from torch_geometric.data import Data
|
8 |
from torch_geometric.nn import GATConv
|
|
|
9 |
from sklearn.metrics.pairwise import cosine_similarity
|
10 |
|
11 |
+
# FastAPI App
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
# Data and Model Initialization
|
15 |
+
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
|
16 |
+
|
17 |
+
# Corrected state dictionary for GATConv model
|
18 |
+
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
|
19 |
+
corrected_state_dict = {}
|
20 |
+
for key, value in original_state_dict.items():
|
21 |
+
if "lin.weight" in key:
|
22 |
+
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
|
23 |
+
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
|
24 |
+
else:
|
25 |
+
corrected_state_dict[key] = value
|
26 |
+
|
27 |
+
# Define GATConv Model
|
28 |
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
|
29 |
def __init__(self, in_channels, hidden_channels, out_channels):
|
30 |
super().__init__()
|
|
|
39 |
x = self.conv2(x, edge_index, edge_attr)
|
40 |
return x
|
41 |
|
42 |
+
# Initialize GATConv model and BERT-based sentence transformer model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
gatconv_model = ModeratelySimplifiedGATConvModel(
|
44 |
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
|
45 |
)
|
46 |
gatconv_model.load_state_dict(corrected_state_dict)
|
47 |
|
|
|
48 |
model_bert = SentenceTransformer("all-mpnet-base-v2")
|
49 |
|
50 |
+
# Ensure DataFrame is loaded properly
|
51 |
df = pd.read_feather("EmbeddedCombined.feather")
|
52 |
|
53 |
+
# Function to get most similar video and recommend top 10 based on GNN embeddings
|
|
|
|
|
|
|
|
|
54 |
def get_similar_and_recommend(input_text):
|
|
|
55 |
embeddings_matrix = np.array(df["embeddings"].tolist())
|
56 |
input_embedding = model_bert.encode([input_text])[0]
|
57 |
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
|
|
|
63 |
"similarity_score": similarities[most_similar_index],
|
64 |
}
|
65 |
|
66 |
+
# Function to recommend top 10 videos based on GNN embeddings
|
67 |
def recommend_next_10_videos(given_video_index, all_video_embeddings):
|
68 |
dot_products = [
|
69 |
torch.dot(all_video_embeddings[given_video_index].cpu(), all_video_embeddings[i].cpu())
|
|
|
76 |
return recommendations
|
77 |
|
78 |
top_10_recommendations = recommend_next_10_videos(
|
79 |
+
most_similar_index, gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
|
80 |
)
|
81 |
|
82 |
+
return {
|
83 |
+
"most_similar_video_title": most_similar_video["title"],
|
84 |
+
"top_10_recommendations": top_10_recommendations,
|
85 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Define the endpoint for FastAPI to get video title and recommendations
|
88 |
+
class UserInput(BaseModel):
|
89 |
+
text: str # The string input from the user
|
90 |
+
|
91 |
+
@app.post("/recommendations")
|
92 |
+
def recommend_videos(user_input: UserInput):
|
93 |
+
if not user_input.text:
|
94 |
+
raise HTTPException(status_code=400, detail="Input text cannot be empty.")
|
95 |
+
|
96 |
+
result = get_similar_and_recommend(user_input.text)
|
97 |
+
|
98 |
+
return result
|