Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -65,6 +65,10 @@ def get_similar_and_recommend(input_text):
|
|
65 |
# Get all features of the most similar video
|
66 |
most_similar_video_features = df.iloc[most_similar_index].to_dict()
|
67 |
|
|
|
|
|
|
|
|
|
68 |
# Recommend the top 10 videos based on GNN embeddings
|
69 |
def recommend_top_10(given_video_index, all_video_embeddings):
|
70 |
dot_products = [
|
@@ -89,7 +93,12 @@ def get_similar_and_recommend(input_text):
|
|
89 |
|
90 |
# Calculate the weight for each GNN output
|
91 |
video_weights = [weight] * len(top_10_recommended_videos_features)
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
# Create the output JSON with the most similar video, final recommendations, and weights
|
94 |
output = {
|
95 |
"search_context": {
|
|
|
65 |
# Get all features of the most similar video
|
66 |
most_similar_video_features = df.iloc[most_similar_index].to_dict()
|
67 |
|
68 |
+
if "text_for_embedding" in most_similar_video_features:
|
69 |
+
del most_similar_video_features["text_for_embedding"]
|
70 |
+
if "embeddings" in most_similar_video_features:
|
71 |
+
del most_similar_video_features["embeddings"]
|
72 |
# Recommend the top 10 videos based on GNN embeddings
|
73 |
def recommend_top_10(given_video_index, all_video_embeddings):
|
74 |
dot_products = [
|
|
|
93 |
|
94 |
# Calculate the weight for each GNN output
|
95 |
video_weights = [weight] * len(top_10_recommended_videos_features)
|
96 |
+
# Exclude unwanted features for recommended videos
|
97 |
+
for recommended_video in top_10_recommended_videos_features:
|
98 |
+
if "text_for_embedding" in recommended_video:
|
99 |
+
del recommended_video["text_for_embedding"]
|
100 |
+
if "embeddings" in recommended_video:
|
101 |
+
del recommended_video["embeddings"]
|
102 |
# Create the output JSON with the most similar video, final recommendations, and weights
|
103 |
output = {
|
104 |
"search_context": {
|