NimaKL commited on
Commit
9cefd88
·
verified ·
1 Parent(s): edf4ae7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -1
app.py CHANGED
@@ -65,6 +65,10 @@ def get_similar_and_recommend(input_text):
65
  # Get all features of the most similar video
66
  most_similar_video_features = df.iloc[most_similar_index].to_dict()
67
 
 
 
 
 
68
  # Recommend the top 10 videos based on GNN embeddings
69
  def recommend_top_10(given_video_index, all_video_embeddings):
70
  dot_products = [
@@ -89,7 +93,12 @@ def get_similar_and_recommend(input_text):
89
 
90
  # Calculate the weight for each GNN output
91
  video_weights = [weight] * len(top_10_recommended_videos_features)
92
-
 
 
 
 
 
93
  # Create the output JSON with the most similar video, final recommendations, and weights
94
  output = {
95
  "search_context": {
 
65
  # Get all features of the most similar video
66
  most_similar_video_features = df.iloc[most_similar_index].to_dict()
67
 
68
+ if "text_for_embedding" in most_similar_video_features:
69
+ del most_similar_video_features["text_for_embedding"]
70
+ if "embeddings" in most_similar_video_features:
71
+ del most_similar_video_features["embeddings"]
72
  # Recommend the top 10 videos based on GNN embeddings
73
  def recommend_top_10(given_video_index, all_video_embeddings):
74
  dot_products = [
 
93
 
94
  # Calculate the weight for each GNN output
95
  video_weights = [weight] * len(top_10_recommended_videos_features)
96
+ # Exclude unwanted features for recommended videos
97
+ for recommended_video in top_10_recommended_videos_features:
98
+ if "text_for_embedding" in recommended_video:
99
+ del recommended_video["text_for_embedding"]
100
+ if "embeddings" in recommended_video:
101
+ del recommended_video["embeddings"]
102
  # Create the output JSON with the most similar video, final recommendations, and weights
103
  output = {
104
  "search_context": {