llama-2-7b-chat / model.py
hysts's picture
hysts HF staff
Migrate from yapf to black
09b3f75
raw
history blame
2.17 kB
from threading import Thread
from typing import Iterator
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
model_id = "meta-llama/Llama-2-7b-chat-hf"
if torch.cuda.is_available():
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
else:
model = None
tokenizer = AutoTokenizer.from_pretrained(model_id)
def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str:
texts = [f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n"]
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f"{user_input} [/INST] {response.strip()} </s><s>[INST] ")
message = message.strip() if do_strip else message
texts.append(f"{message} [/INST]")
return "".join(texts)
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
prompt = get_prompt(message, chat_history, system_prompt)
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
return input_ids.shape[-1]
def run(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.8,
top_p: float = 0.95,
top_k: int = 50,
) -> Iterator[str]:
prompt = get_prompt(message, chat_history, system_prompt)
inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to("cuda")
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)